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GENERALIZATIONS OF GAUSS’S SECOND
SUMMATION THEOREM AND BAILEY’S
FORMULA FOR THE SERIES ;F;(1/2)

ARrJUN K. RATHIE, YONG SuP KIM, AND JUNESANG CHOI

ABSTRACT. We aim mainly at presenting two generalizations of
the well-known Gauss’s second summation theorem and Bailey’s
formula for the series 2 F1(1/2). An interesting transformation for-
mula for ,F, is obtained by combining our two main results. Rel-
evant connections of some special cases of our main results with
those given here or elsewhere are also pointed out.

1. Introduction and preliminaries

We start with Kummer’s theorem (2]

a, b B I'(3)T(1+a-b)
(1.1) 2F1[1+a—bl_1}“2GF(%a2+%)F(1+%a'b)’

Gauss’s second summation theorem [2]

(R AP e ()

and Bailey’s formula [2]
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As Bailey pointed out in his tract [2], the summation theorems (1.2)
and (1.3) can be obtained from the following result [2]

(1.4) o [a’cb{ %J =2, R [“’ . b’ - 1}

by taking ¢ = %a + %b + % and b = 1 — a respectively and using (1.'1).
In 1996, Lavoie, Grondin and Rathie [3] generalized the above sum-
mation theorems (1.1) to (1.3) and obtained the explicit expressions for

(1.5) 21 [1+C;-z+z[_1}’
(1.6) 2£1 [%(a Shaia | %] ’
and

(1.7) 2F1 [a’ " aH' 2]

for i =0, +1, £2, +3, +4, £5.
In 1927, Whipple [5] generalized the Kummer’s theorem (1.1) in the

form
JFy [a, b' _ IJ

s Lo T (3b+ 30

' L(b+c) T (3c—3b)

b, 2(b+c—a), 2(b+c—a+1)
XSFZ[ btc—a, 3(b+c+1) ‘1
and in 1929, Bailey [1] generalized the Kummer’s theorem (1.1) in the
form
b
2Fy [a,c ’ - 1]
 T(b+c+1) T (a—b+c+1))

(1.9) T(3(c=b+1) T (3(a+b+c+1))

) 1

ib, ib+ a, 2(b+c~—1), 1(b+c+3),
X7F6[%c,§c+z,i(b-2kc 1), (j—b+c+3)

ib+c—a—-1),3(b+c—a+1)

%(a%—b—kc—l—l),z( a+b+c)11}'
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The authors aim mainly at providing generalizations of (1.2) and (1.3)
by using the results (1.8) and (1.9). An interesting transformation for-
mula for ,Fy is obtained by just combining their main results. Relevant
connections of some special cases of their main results with those given
here or elsewhere are also pointed out.

2. Generalizations of (1.2) and (1.3)

The following two generalizations of the results (1.2) and (1.3) will
be established:

a, b|1
2F1[c \5}

22T (c) T (c — 1)

2. =
21) T (15) T (2c—b)
c—b, c—2b~1ta, c— 1b—f—
X3F2[ c—%b-f—% 20—a—b ‘ ]
and
a, b| 1
2F1{ 3
2T (c—3b+3) T (3a+ 20+ 3)
(2) 36+ T (c+za-30+3)

1 1 1 3 1 1
36— 3 gc—gb+ 3 gc—3b, 3c—

1
X7F6[ 171 151,01 1212 3
5C— b 4,§C,‘2‘C+§,§C+ T — Zb+Z’
L. 1
3¢

PROOF OF (2.1) AND (2. 2) For convenience, we rewrite (1.4) here:
a, b| 1| _ 4 a, c—b|
(2.3) 2F1[ g }2] = 29,5, [ ] 1]

which, given in Bailey’s tract [2], can be obtained from the following

result:
(1—2)°3F) [a, b\ 2 }
|

(2.4) -

a’?
—2F1[ .

by taking z — —1.
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The derivations of (2.1) and (2.2) are straightforward. In fact, if we
use the result (1.8) by replacing b by ¢ — b in the right-hand side of (2.3)
or (1.4), we get (2.1). Similarly, if we use the result (1.9) by replacing b
by ¢ — b in the right-hand side of (2.3), we get (2.2).

Furthermore we shall present another method of proof of the result
(2.3). For this, recall the integral representation for 2 £ [2]:

c 1
(25) 2F1 [a’ch = ﬁb_)%é)t?) /O 7 (1 - ¢)°P T (1 — t2) % dt,

which, upon taking z = —1 and replacing b by ¢ — b, yields

SIS
— F(C—E(Z;C_))m /01 el — )t (1 + ) dt.

On the other hand, we put z =1/2 in (2.5) to get
(2.7)

o 313 = me [ e (-5)

which, upon taking 1 — ¢ = u and replacing v by ¢ in the resulting
identity, becomes

(2.6)

a, b|l 2°T'(c) b oesbo b-1 -
28) 2R ||| = mrr ey [ T A= ()
28 25 | |5] = rry | et a0t
Now it is easy to get (2.3) by combining (2.6) and (2.8).
By equating (2.1) and (2.2), and using a well-known transformation
formula of 3F5 (see [2, p. 14, Eq. (1)]), we get the following transforma-
tion formula:

(2.9)
1 1 1
c—a, 5b, 5b+5 [
sF2 [c—%a, c—%a—k% !
_T(c—b)T@2c—bT(c—}a)T(c—La+}) T (}+30+3b)
()T (2c—a-b)T(c—2)T(0+3)T(c+3a—2b+13)
C_lb_l, lc_.l:b_l,_g, lc_lb, .]:c_lb_‘_l,
><7F6[ RV WS B S WS BB T S
2C¢— ¢ 2 36 3¢+ 3, 3¢+ za— 370+ 7%,
1 1 1 1 1 1 1
%cl—za‘l_4b1—1’ ;C—z?—z?Jrz»l%all
—2-c+za—zb+z,c—§a——2—b+-2-
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3. Special cases

Some special cases of our main results (2.1) and (2.2) are shown to be
connected, implicitly or explicitly, with some known results given here
or elsewhere.

(1) In (2.1), if we take ¢ = 2a + b+ 1 and then apply the well-
known Gauss’s theorem [2]:

o1 o [* ] = HERETR Bemamn>0

to the resulting equation, we get, after a little simplification, the result
(1.2).

(2) In(2.1), if we take b =1 —a and use the Watson’s theorem [2]:

a+b+1), 2
(ST EY RIS PSS
P T(gb+3)T(e-q0+3) T(c—30+3)

3F2{ ( e, b, ¢ ll] (R(2¢c—a —b) > —1)
L
1
2

+ |~

we get the result (1.3).

(3) In (2.1), if we take ¢ = 2a+ b+ 2i+ 3, 1 fori =0, +1, +2,
+3, 44, £5, we get eleven results which are seen to be equivalent to the
known results (1.6) obtained by Lavoie, Grondin and Rathie [3].

(4) In(2.1),ifwetakeb=1—a+14,fors=0, £1, +2, +3, +4, +5,
we also get eleven results which are seen to be equivalent to the known
results (1.7) obtained by Lavoie, Grondin and Rathie [3].

(5) In (2.2), if we take ¢ = 3a + 3b+ 3, we immediately get (1.2),
since one member of the numerator parameters, i.e., %c — %a - %b - %
in 7Fg becomes zero.
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(6) In (2.2), if we take b = 1 — a, we, after a little simplification,

get
a, 1—all
2k [ c 'E}
_ 2er (c+ la)
(383) = F{c+a)T (12— %a)

1,11 1 11 1,1 1, 11
x 5F} c-i—2a1 1, %c+4ia+2, %c+2a 2,%0 3 Za\l ‘
3¢t 3032 2 2

In (3.3), if we use the known result [2]

1
a, sa+1, b, ¢ d ‘
5F4[%a,1+a—b,1+a—c,1+a—d 1

Frl+a-bT(1+a-c)T(Q+a-d)T'1+a—-b—c—d)

(3.4)

Frl+a-b-¢)Tl+a—-c—d)T'(1+a~-b—-d)T'(1+a)

and use the duplication formula for the Gamma function (see, e.g, [4,
p- 7, Eq. (49)]), we get, after a little simplification, the result (1.3).

(7) In (22),ifwetakec=2a+t+2i+3andb=1-a+1,
then, for ¢ = 0, £1, £2, +£3, +4, +5, we get two identities (each one
containing eleven summation formulas) which are seen to be equivalent
to the known results (1.6) and (1.7), respectively, obtained by Lavoie,
Grondin and Rathie [3].
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