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ANOTHER PROOF OF
KUMMER’S SECOND THEOREM

ARJUN K. RATHIE AND JUNESANG CHOI

ABSTRACT. We aim at giving another method of proving the well-
known and useful Kummer’s second theorem without changing its
original form.

1. Introduction

From the theory of differential equations, Kummer [3] derived the
following very interesting useful result which is known in the literature
of hypergeometric series as Kummer’s Second Theorem:

If 2a is not an odd integer< 0, then
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In 1928, Bailey [1] derived this formula in an equivalent form
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by using the well-known Gauss’s second summation theorem (cf., e.g.,
[4, p. 69)):
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provided a+b+1+# 0, —2, —4, ... ; T’ denotes the well-known Gamma
function.
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By the way, we also show that Kummer’s theorem (1.1) can be derived
by using the well-known Gauss’s summation theorem (see [3]) which is
a more useful and convenient form than (1.3): For Re(c—a—b) > 0 and
¢ being neither zero or a negative integer,

F'(e)T(c—a—1b)
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without changing the original Kummer’s theorem (1.1).

2. Proof
We first introduce the Pochhammer symbol (@), defined by

2.1) (a),,;:{“(a+1)"'(a+”—1) fneN:={1,23...}

1 if n=20,
which is also written in terms of Gamma function

(22) (a)n = l;’(})”—)

We give some known identities involving the Pochhammer symbol
required in this note:

(=1)*(M)n

23) k= g5

(0<k<n;neNU{0}),

(2.4) (M)zn = 22 (%)n <A—;1)n (n e NU {0}).

The special case A = 1 of (2.3) yields a useful identity

(2.5) (n— k)l = ((‘_12:):' (0<k<n).
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We also give a known formal series manipulation:

0o oo [n/2]
(2.6) S > A(k,n) Z > A(k,n — 2k),
n=0k=0 n=0 k=0

where [z] denotes the greatest integer < z, and A(k,n) is a function of
variables k and n.
Now we are ready to prove (1.1). Let

1'2 > n
7))L
n=0

Expressing the left-hand side of (2.7) in term of the product of two
power series, and using (2.6), we have

(2%) (i k! (« ff) 22k)
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with which, considering (2.7), we have
[n2/22] 1
¢ (n —2k)!k! (a+3), 22’

1).

Finally, applying Gauss’s theorem (1.4) and Legendre duplication for-
mula for Gamma function to (2.8), we get

to which applying (2.5) and (2.4), we obtain

1 n n 1 1
(2.8) ayn = EQFI (_—2-7 —§+'2—a a+'§

. 1 (a)n n
(2.9) Qpn = i (@ VAL

Substituting (2.9) in (2.7) arrives immediately at our desired result,
that is, the right-hand side of (1.1).
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