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A NEW PROOF OF SAALSCHÜTZ’S THEOREM FOR THE

SERIES 3F2(1) AND ITS CONTIGUOUS RESULTS WITH

APPLICATIONS

Yong Sup Kim and Arjun Kumar Rathie

Abstract. The aim of this paper is to establish the well-known and very
useful classical Saalschütz’s theorem for the series 3F2(1) by following a
different method. In addition to this, two summation formulas closely

related to the Saalschütz’s theorem have also been obtained. The results
established in this paper are further utilized to show how one can obtain
certain known and useful hypergeometric identities for the series 3F2(1)
and 4F3(1) already available in the literature.

1. Introduction and results required

We start with the following well-known and useful classical Saalschütz’s
theorem [4, p. 87, Section 51] for the series 3F2(1). If n is a non-negative
integer and if a, b, c are independent of n,

(1.1) 3F2

[
−n, a, b

c, 1 + a+ b− c− n
; 1

]
=

(c− a)n(c− b)n
(c)n(c− a− b)n

.

As mentioned in almost all the standard books on generalized hypergeomet-
ric series that this theorem can be established with the help of the following
Euler’s transformation formula [4, p. 60, Eq.(5)]. If |x| < 1,

(1.2) 2F1

[
a, b
c

; x

]
= (1− x)c−a−b

2F1

[
c− a, c− b

c
; x

]
by equating the coefficient of xn on both sides. On the other hand, in 1926,
Whipple [6] has obtained the following transformation formula between a nearly
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poised 4F3(1) and a Saalschützian 5F4(1) series:

(1.3)

4F3

[
f, 1 + f − h, h− a, d
h, 1 + f + a− h, g

; 1

]
=

Γ (g) Γ (g − f − d)

Γ (g − f) Γ (g − d)

× 5F4

[
a, d, 1 + f − g, 1

2f,
1
2f + 1

2
h, 1 + f − a− h, 1

2 + 1
2f + 1

2d−
1
2g, 1 +

1
2f + 1

2d−
1
2g

; 1

]
,

where either f or d must be a negative integer.
Whipple [6] also showed that, if f = −N , the other parameters a, f , g and

h in the 5F4(1) series can be chosen in four ways, in order that this series
can be reduced to a summable Saalschützian 3F2(1) series and carry out these
summations, writing a for f , b for g, we get four nearly-poised summation
theorems [5, p. 244, Eq.(III.15,16,17,18)]:

(1.4) 3F2

[
a, 1 + 1

2a, −N
1
2a, b

; 1

]
=

(b− a− 1−N)(b− a)N−1

(b)N

or equivalently

(1.5) 3F2

[
a, 1 + 1

2a, −N
1
2a, b

; 1

]
=

(2 + b− a)N (b− a− 1)N
(b)N (1 + a− b)N

,

(1.6) 3F2

[
a, b, −N

1 + a− b, 1 + 2b−N
; 1

]
=

(a− 2b)N (1 + 1
2a− b)N (−b)N

(1 + a− b)N ( 12a− b)N (−2b)N
,

(1.7) 4F3

[
a, 1 + 1

2a, b, −N
1
2a, 1 + a− b, 1 + 2b−N

; 1

]
=

(a− 2b)N (−b)N
(1 + a− b)N (−2b)N

,

(1.8)

4F3

[
a, 1 + 1

2a, b, −N
1
2a, 1 + a− b, 2 + 2b−N

; 1

]
=

(a− 2b− 1)N ( 12 + 1
2a− b)N (−b− 1)N

(1 + a− b)N ( 12a− 1
2 − b)N (−2b− 1)N

.

The aim of this paper is to establish the well-known Saalschütz’s theorem
(1.1) by following a different method. In addition to this, explicit expressions
of

3F2

[
a, b, −n

c, 1 + a+ b− c− n+ i
; 1

]
for i = 1, 2 closely related to (1.1) have also been obtained. These results are
further utilized to show how one can obtain known identities (1.5), (1.6) and
(1.7). For this, the following results will be required in our present investiga-
tions.
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An integral transformation [4, p. 85, Section 49] :

(1.9)

3F2

[
α, β, ρ
γ, ρ+ σ

; 1

]
=

Γ(ρ+ σ)

Γ(ρ)Γ(σ)

∫ 1

0

xρ−1 (1− x)σ−1
2F1

[
α, β
γ

; x

]
dx,

provided ℜ(ρ) > 0, ℜ(σ) > 0 and ℜ(γ + σ − α− β) > 0.
Kummer’s transformation [4, p. 60, Eq.(4)] : If |x| < 1 and |x/(1− x)| < 1,

(1.10) 2F1

[
a, b
c

; x

]
= (1− x)−b

2F1

[
c− a, b

c
; − x

1− x

]
.

Vandermonde’s theorem [5, p. 28, Eq.(1.7.7)]:

(1.11) 2F1

[
−n, β

γ
; 1

]
=

(γ − β)n
(γ)n

for n = 0, 1, 2, . . ..
The well-known identity [5, p. 240, Eq.(I.30)] :

(1.12) Γ(c− n) = (−1)n
Γ(c)

(1− c)n

for n = 0, 1, 2, . . ..

2. Proof of Saalschütz’s theorem (1.1)

In order to derive (1.1), we proceed as follows. Denoting the left hand side
of (1.1) by S and taking α = a, β = −n, γ = c, ρ = b and σ = 1 + a − c − n,
in (1.9), we have

(2.1)

S = 3F2

[
−n, a, b

c, 1 + a+ b− c− n
; 1

]
=

Γ(1 + a+ b− c− n)

Γ(b)Γ(1 + a− c− n)

∫ 1

0

xb−1 (1− x)a−c−n
2F1

[
a, −n

c
; x

]
dx

=
(c− a)nΓ(1 + a+ b− c)

(c− a− b)nΓ(b)Γ(1 + a− c)

×
∫ 1

0

xb−1 (1− x)a−c−n
2F1

[
a, −n

c
; x

]
dx

=
(c− a)nΓ(1 + a+ b− c)

(c− a− b)nΓ(b)Γ(1 + a− c)

×
∫ 1

0

xb−1 (1− x)a−c
2F1

[
c− a, −n

c
; − x

1− x

]
dx,

where we have used (1.12) and (1.10) for the third and fourth equalities, re-
spectively.



132 YONG SUP KIM AND ARJUN KUMAR RATHIE

Now, expressing 2F1 as a series, changing the order of integration and sum-
mation (which is seen to be justified due to the uniform convergence of the
series), evaluate the integral and then using the result (1.12), we get, after a
little simplification,

(2.2) S =
(c− a)n

(c− a− b)n

n∑
r=0

(b)r(−n)r
(c)rr!

,

which can be written in the form

S =
(c− a)n

(c− a− b)n
2F1

[
−n, b

c
; 1

]
.

Finally, using Vandermonde’s theorem (1.11), we get

S =
(c− a)n(c− b)n
(c)n(c− a− b)n

.

This completes the proof of (1.1).

3. Contiguous results

The results contiguous to the Saalschütz’s theorem (1.1) to be established
are
(3.1)

3F2

[
a, b, −n

c, 2 + a+ b− c− n
; 1

]
=

(c− a− 1)n(c− b)n
(c)n(c− a− b− 1)n

{
1− nb

(c− a− 1)(c− b− 1 + n)

}

=
1

(a− b)(c)n(c− a− b− 1)n

{
a(c− a− 1)n(c− b)n − b(c− a)n(c− b− 1)n

}

and

(3.2)

3F2

[
a, b, −n

c, 3 + a+ b− c− n
; 1

]
=

∑
a↔ b

{
a(a+ 1)(c− a− 2)n(c− b)n

(a− b)(a− b+ 1)(c)n(c− a− b− 2)n

− 2ab(c− a− 1)n(c− b− 1)n
(a− b− 1)(a− b+ 1)(c)n(c− a− b− 2)n

}
,

where
∑

a↔ b f(a, b) ≡ f(a, b) + f(b, a).
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4. Proofs of (3.1) and (3.2)

In order to derive the result (3.1), we proceed as follows. Denoting the left
hand side of (3.1) by S1 and in (1.9), taking α = a, β = −n, γ = c, ρ = b and
ρ+ σ = 2 + a+ b− c− n so that σ = 2 + a− c− n, we have
(4.1)

S1 =
Γ(2 + a+ b− c− n)

Γ(b)Γ(2 + a− c− n)

∫ 1

0

xb−1 (1− x)1+a−c−n
2F1

[
a, −n

c
; x

]
dx.

Using (1.12) and then (1.10), we have

(4.2)

S1 =
(c− a− 1)nΓ(2 + a+ b− c)

(c− a− b− 1)nΓ(b)Γ(2 + a− c)
×

∫ 1

0

xb−1 (1− x)1+a−c

× 2F1

[
c− a, −n

c
; − x

1− x

]
dx.

Now, proceeding similarly as in case of the derivation of Saalschütz’s theorem
(1.1), we easily arrive at

(4.3) S1 =
(c− a− 1)n

(c− a− b− 1)n

n∑
r=0

(b)r(−n)r(c− a)r
(c)r(c− a− 1)rr!

.

Now, writing
(c− a)r

(c− a− 1)r
= 1 +

r

c− a− 1

and separating into two parts and adjusting the second series and then summing
up the two series, we get

(4.4)

S1 =
(c− a− 1)n

(c− a− b− 1)n

×

{
2F1

[
−n, b

c
; 1

]
− nb

c(c− a− 1)
2F1

[
−(n− 1), b+ 1

c+ 1
; 1

]}
.

Now, using Vandermonde’s theorem (1.11) in both 2F1, we can easily arrive at
the right hand side in the first form of (4.1). In a similar way, the result (3.2)
can be established, so we prefer to omit the details.

Remark. The results (3.1) and (3.2) have already been obtained by Arora and
Rathie [1] by following a different method.

5. Applications

In this section, as an applications, we shall show, how one can obtain the
known and useful hypergeometric identities (1.6), (1.7) and (1.8) with the help
of Saalschütz’s theorem (1.1) and its contiguous result (3.1) and (3.2).

Proof of (1.6). In (3.1), if we take a = a, b = b, n = N and c = 1 + a + b, and
after a little simplification, we easily obtained the identity (1.6). □
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Proof of (1.7). In order to prove the identity (1.7), we shall use the following
result (which can be derived without any difficulty)

(5.1)

4F3

[
a, 1 + 1

2a, b, −N
1
2a, 1 + a− b, 1 + 2b−N

; 1

]
= 3F2

[
a, b, −N

1 + a− b, 1 + 2b−N
; 1

]
− 2bN

(1 + a− b)(1 + 2b−N)

× 3F2

[
a+ 1, b+ 1, −(N − 1)
2 + a− b, 2 + 2b−N

; 1

]
.

Now it is easy to see that the first 3F2 on the right hand side of (5.1) can be
evaluated with the help of (1.6) and the second 3F2 on the right hand side of
(5.1) can be evaluated with the help of Saalschütz’s theorem (1.1) and after a
little simplification, we arrive at the right hand side of (1.7). This completes
the proof of (1.7). □

Proof of (1.8). In order to prove the identity (1.8), we shall use the following
result (which can be derived without any difficulty)

(5.2)

4F3

[
a, 1 + 1

2a, b, −N
1
2a, 1 + a− b, 2 + 2b−N

; 1

]
= 3F2

[
a, b, −N

1 + a− b, 2 + 2b−N
; 1

]
− 2bN

(1 + a− b)(2 + 2b−N)

× 3F2

[
a+ 1, b+ 1, −(N − 1)
2 + a− b, 3 + 2b−N

; 1

]
.

Now it is easy to see that the first 3F2 on the right hand side of (5.2) can
be evaluated with the help of (3.2) and the second 3F2 on the right hand
side of (5.2) can be evaluated with the help of the result (3.1) and after some
simplification, we arrive at the right hand side of (1.8). This completes the
proof of (1.8). □
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