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The Fourth and Eighth Order Mock Theta Functions
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ABSTRACT. In the paper we consider deemed three mock theta functions introduced by
Hikami. We have given their alternative expressions in double summation analogous to
Hecke type expansion. In proving we also give a new Bailey pair relative to a2. I presume
they will be helpful in getting fundamental transformations.

1. Introduction

In his last letter to Hardy [6, pp. 354-355] Ramanujan gave a list of seventeen
functions which he called “mock theta functions”. The results in this letter formed
the basis of the study of these functions. The mock theta functions are not modular,
but have a nice asymptotic behaviour when ¢ is a root of unity. Ramanujan included
in his letter four separate classes of mock theta functions, one class of third order,
two of fifth order and one of seventh order. The systematic understanding and even
the “order” are still missing.

Many deep results were obtained about the third order mock theta functions.
This was possible because Watson was able to find representations of them from
which he was able to study their behaviour under fundamental transformation of
modular group [7]. For example,
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is one of the third order functions. Watson showed that
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and then using the Poisson summation formula to the right hand side of (1.2)
obtained the modular transformations of f(q).
In [5] Hikami introduced the functions Dg(q), T12(¢) and I13(q) defined as
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and conjectured that they are of fourth order, eighth order and eighth order respec-
tively. Hikami also considered their behaviour outside the unit circle and gave their
WRT invariants [5].

The object of this paper is to give counterparts of (1.2) for these fourth order and
eighth order mock theta functions. This will be helpful in finding the transformation
theory for these functions. These will be obtained by the method of Bailey pairs.
We also find a new Bailey pair with respect to a = ¢2.

We will be using the standard notation of g-Calculus :
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2. Bailey lemma
Two sequences {ay, }and {3,}, n > 0, form a Bailey pair relative to a number

a if

(2.1) b= o

= (G Dn—r (G Ortr

for all n > 0. Clearly, the o's are uniquely determined by the ’s. In fact {a, }and
{8} form a Bailey pair if and only if

a,=(1—a "m nei (379) 5.
(2.2) n=(1—ag? jzo . (1))

for all n > 0 . See [2,(2.1), p. 70].

Corollary 2.1[2, Cor. 2.1, p. 70]. If {a,}and {B,} form a Bailey pair relative to
a, then
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provided that both sums converge absolutely.

3. Bailey pair

We now give a Bailey pair {a,}, {B,.} relative to a = ¢?. For this we shall
require the following result of Andrews [1, Lemma 11, p. 130]. Let a sequence of
polynomials (in ¢) U, be defined by

n

(31) =2 [ @),

j=1

(There is a slight misprint which has been corrected.)
For the U, defined in (3.1), we have

.
(3.2) Uz = =24 7203 79",
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(3.3) Uspi1 = St Z g7

j=—n

Setting a = ¢? in (2.1), we get
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Hence we finally have
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4. Another representation for Ds(q), I12(q) and I13(q)

We shall prove the following theorems giving another representation for Dg(q),
I15(q) and I13(q).

Theorem 1.
(¢ 9%
(a) WDG(Q)

e Sn +3n n

:_qu o Z q - +2Zl+q4n+2 Z q’
j=—n

]_—’ﬂ

St Sn +6n+2 "N

+2 Z q3n o2 Z qﬂ -4 Z 1+ gntd Z qukj.
j=0

n=0 7=0

) LD p )

(—4:6%) 0
0 q2n2+3n —1 2n +3n enai) 2n +n—1
— _ Jlen—7g
- 1 +q4n+1 Z 1 +q4n+1 Zq 2 Z 1 +q4n+1
n=0 n=-—0o0 n=-—oo
e 2n%+3n —1 2n“+3n 2n +3n
q _ q j(=2n—-1—j3)
+ ( 1+ q4n+1 Z 1_|_q4n+1> Z q 2 Z 1 _|_q4n+1'
n=0 n=-—oo j=—2n —
(¢ 9%
¢) ——o12(q
© (—4:¢%) @
& 2n +5n 21 @ y —1 q2n +5n  2n+1 i )
Jlen—7 n—j
Z 4n+12q D, g 27
n=—oo j=—1

0 2n +n—1 0 o2n24+n—2 —1 ]
Z TR R D DI
n+ n—
= 1+ q n=1 1+ q j=—2n



170 Bhaskar Srivastava

Proof of Theorem 1(a)
We start with Dg(q).

o0
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(4.1) Z n+1 a1 nZ:oq (" Qntr

Setting p; = iq, p2 = —iq and a = ¢? in (2.2), we have
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and this simplifies to
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Taking the Bailey pair {a,}, {f}as given in (3.8), (3.9) and (3.10), we have
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which proves Theorem 1(a).

Proof of Theorem 1(b)

We start with I13(q).
I15(q) is defined as :

o (10739) (g% 9)n
(4.5) Tia(q Zq n+1 +1:qu :
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Setting p; = iqe, p2 = —ig? and a = ¢ in (2.2), we get
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In (4.6) we take the Bailey pair {a,},{8n} see [1, (7.20)—(7.21), p. 131], namely,
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We take the second summation in the first bracket and first write n — 1 for n to get

oo 3n +7n+3 i i q3n2+n71 nil .
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+3 4n—1
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Writing —n for n on the right hand side of (4.12)
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Hence the two summations in the first bracket on the right hand side of (4.11) equals
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We now simplify the second summation in the second bracket on the right hand
side of (4.11),
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identity,
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So the two summations in the second bracket on the right hand side of (4.11) equals

ot q2n2+3n —1 q2n +3n (—2 L —1 2n +3n
£ 0 £ J n— ] £
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Using (4.14) and (4.17) in (4.11), we have

(w18) L% oo
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_ - Jj(2n=j) _9
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which proves Theorem 1(b).
Proof of Theorem 1(c)
Now we consider I12(q).
2 a4 2 zqz —iq%; q)n
(4.19) I12(q Z " n+1 Z ! ”+1 S Dnt1
Setting p; = iq%, P2 = —iq% and a = ¢? in (2.2), we have
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Taking the Bailey pair {a,},{8,} given in (3.8), (3.9) and (3.10) and setting in
the above identity, we get
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We will split the first summation on the right hand side of (4.21) into two parts
using

1 (1 —g¢*n*2) 1 ( 1 q )
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Writing n — 1 for n in the second summation on the right hand side in the above,
we have

= 1—g'+? 3n245
4.23 noon i
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Here we have put —n for n in the second summation on the right hand side. We
will now split the second summation of the right hand side in (4.21) into two parts
using
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to get
2 1— gt 3n2+8n+3 —j2—
(4.25) q" *+én+ q i’=i
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Writing n — 1 for n in the summations on the right hand side in the above, we have
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Hence putting (4.24) and (4.26) in (4.21), we have
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which proves Theorem 1(c).
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