• Title/Summary/Keyword: Hyperbolic conservation laws

Search Result 17, Processing Time 0.027 seconds

THE RIEMANN PROBLEM FOR A SYSTEM OF CONSERVATION LAWS OF MIXED TYPE (II)

  • Lee, Choon-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.37-59
    • /
    • 1998
  • We prove that solutions $u^\epsilon$ for the mixed hyperbolic-elliptic system of conservation laws with the viscosity term are total variation bounded uniformly in $\epsilon$ and that the solution $u^\epsilon$ converges to the solution for the mixed hyperbolic-elliptic Riemann problem as $\epsilon \to 0$.

  • PDF

CONVERGENCE OF APPROXIMATE SOLUTIONS TO SCALAR CONSERVATION LAWS BY DEGENERATE DIFFUSION

  • Hwang, Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.145-155
    • /
    • 2007
  • In this paper, we show the convergence of approximate solutions to the convective porous media equation using methodology developed in [8]. First, we obtain the approximate transport equation for the given convective porous media equation. Then using the averaging lemma, we obtain the convergence.

THE GENERALIZED RIEMANN PROBLEM FOR FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS I

  • Chen, Shouxin;Huang, Decheng;Han, Xiaosen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.409-434
    • /
    • 2009
  • In this paper, we consider a generalized Riemann problem of the first order hyperbolic conservation laws. For the case that excludes the centered wave, we prove that the generalized Riemann problem admits a unique piecewise smooth solution u = u(t, x), and this solution has a structure similar to the similarity solution u = $U{(\frac{x}{t})}$ of the correspondin Riemann problem in the neighborhood of the origin provided that the coefficients of the system and the initial conditions are sufficiently smooth.

CONSTRUCTION OF THE 2D RIEMANN SOLUTIONS FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

  • Sun, Meina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • In this note, we consider the Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct global solutions.

THE NUMERICAL SOLUTION OF SHALLOW WATER EQUATION BY MOVING MESH METHODS

  • Shin, Suyeon;Hwang, Woonjae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.563-577
    • /
    • 2012
  • This paper presents a moving mesh method for solving the hyperbolic conservation laws. Moving mesh method consists of two independent parts: PDE evolution and mesh- redistribution. We compute numerical solution of shallow water equation by using moving mesh methods. In comparison with computations on a fixed grid, the moving mesh method appears more accurate resolution of discontinuities.

A TREATMENT OF CONTACT DISCONTINUITY FOR CENTRAL UPWIND SCHEME BY CHANGING FLUX FUNCTIONS

  • Shin, Moungin;Shin, Suyeon;Hwang, Woonjae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.29-45
    • /
    • 2013
  • Central schemes offer a simple and versatile approach for computing approximate solutions of nonlinear systems of hyperbolic conservation laws. However, there are large numerical dissipation in case of contact discontinuity. We study semi-discrete central upwind scheme by changing flux functions to reduce the numerical dissipation and we perform numerical computations for various problems in case of contact discontinuity.

A NUMERICAL SCHEME WITH A MESH ON CHARACTERISTICS FOR THE CAUCHY PROBLEM FOR ONE-DIMENSIONAL HYPERBOLIC CONSERVATION LAWS

  • Yoon, Dae-Ki;Kim, Hong-Joong;Hwang, Woon-Jae
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2009
  • In this paper, a numerical scheme is introduced to solve the Cauchy problem for one-dimensional hyperbolic equations. The mesh points of the proposed scheme are distributed along characteristics so that the solution on the stencil can be easily and accurately computed. This is very important in reducing errors of the scheme because many numerical errors are generated when the solution is estimated over grid points. In addition, when characteristics intersect, the proposed scheme combines corresponding grid points into one and assigns new characteristic to the point in order to improve computational efficiency. Numerical experiments on the inviscid Burgers' equation have been presented.

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.