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Abstract. In this paper we prove the existence of solutions for the nonlinear hyperbolic system of conservation laws in several space variables provided that the initial data are very close to each other. We also give an example and discuss the existence of solutions for large initial data
1. Introduction

In this paper we will study the existence of solutions for the nonlinear 
hyperbolic system of conservation laws in several space variables

n
(1) 此 + E〕f = o, (x, t) eRn x R,

i=l

where u = (ui, u2, • • - , is a vector function of (⑦, i) G x R, and 
= (/{,/$,•.•,/&『) is a vector function of u € R저. The Riemann 

problem is an initial value problem of (1) with a given initial data

⑵ w,o)=h’ …그0’

Ui, 7/ • ⑦ < 0,
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where u = (沙i, z/沙 • • •，가J is a given unit vector. In one space di
mension case, the existence of solutions of equation (1) is obtained by 
several authors [1], [6], [9] and therein. Many years ago, several au
thors had studied in this area, Conway and Smoller[2], Kruzkov[5], and 
Vol’pert[10] proved the existence and uniqueness of weak solutions if 
N = 1 and initial data uq{x) is bounded and of bounded variation 
in the sense of Tonelli-Cesari. Recently, Majd.a[7], Dafermos[3],[4] and 
Rauch[8] also study the system of conservation laws in several space di
mensions. Zhang and Hsiao[l] also classified the solutions of the scalar 
equation of conservation laws in two dimensional spaces when the initial 
data is differently given on each quadrant.

In this paper we will prove the existence of solutions which satisfies 
some additional conditions provided that initial data are very small and 
give an example in gas dynamics.

This paper consists of four sections: In the second section we shall 
give some terminologies which will be use the next sections. In the 
third section, we will look into the existence of planar centered waves, 
shock waves satisfying the jump conditions and the stability conditions, 
contact discontinuities occurring in the degenerate (or nonconvex) sys
tem, and prove our main theorem which is the existence of solutions in 
the Riemann problem. In the fourth section, we will give an example 
appearing the gas dynamics in the Lagrangian coordinate system of the 
two dimension case. Finally we introduce results and their methods of 
the proofs of Conway and Smoller[2], Vol’pert[10], and Kruzkov[5].

2. Preliminaries

In this section we give some terminologies which will use next sec
tions. The function u(x, t) is a weak solution of the system of conserva
tion laws (1) with initial value uq{x) if u and f(u) = (J1 (u), … , /n(u)) 
are integrable functions over every bounded set of the half-plane i > 0 



EXISTENCE OF SOLUTIONS FOR THE NONLINEAR HYPERBOLIC SYSTEM 75

and the integral relation

poo r n I*
(3) / / {(/)w + g2(l)xir(u')}dxdt+ dx = 0

Jo i=1

is satisfied for all smooth test vectors(》G Cg°(Rn x R+; RN).
For piecewise smooth solutions, the condition (3) are equivalent to 

requiring the following two properties :

I. In regions of smoothness for u, the equation in (1) are satisfied,
II. If u has a jump discontinuity across a space-time hypersurface 

r with outward space-time normal (s,z/), v = (沙i,... ,vn), the 
following nonlinear boundary conditions are satisfied,

n
(4) 昌[씨 + 乞세/池)]|r = 0

i=l

with the brackets [•] denoting the jump in a quantity.

The conditions in (4) are called the generalized Rankine-Hugoniot jump 
conditions.

As we know that the Riemann problem (1) and (2) is invariant to 
the dilation (:r,i) ―今 (oa, cd), we will consider a solution of the form

77 • T
(5) —<), e = 스

which is modified by the 1-dimensional case. If (5) is a solution of (1) 
and (2), (5) is a solution of the system of ordinary differential equations

—；du + • f(u)) = 0

with the boundary condition

以 (+oo) = ，以(一oo) = Ui,

where = Y^i=i 以if池) and f(u) = (/乂以),..., fn(u)) is a matrix. 
This implies the nonlinear eigenvalue value problem

(6) ⑴ • Df(u) — 引)du = 0,



76 CHOON HO LEE

where 1U〕f (u) = i』iDfl(u) and Dfl is a Jacobi matrix ofThis 
idea gives us the following definition: A system (1) is called hyperbolic in 
the direction v if the matrix u • D f (u) has n real eigenvalues 九 (以; i』)(i = 
1, 2, … , n). It is called strictly hyperbolic in the direction v if all of the 
Xi(u; v) are distinct, i. e.

Ai(n; 沙) < 人2(凶 沙) < … < 슈(以; 沙)•

The system (1) is called (strictly) hyperbolic if it is strictly hyperbolic 
in every direction v.

We assume (1) is strictly hyperbolic in the direction v. Then the 
singular solution of (6) will be expressed by

(7) A = Xi(u\ v)

(8) du is parallel to r》(u; p)

where 7%(以; z/) is the right eigenvector corresponding to the eigenvalue 
人(以；以).

An i-Riemann invariant in the direction 少 is a smooth function wy : 
A『 一> R such that if u € TV,

(9) n(u;z/) • Vw누(u) = 0.

Then there are (n—1) z-Riemann invariants whose gradients are linearly 
independent in N.

A system (1) is called i-th convex or genuinely nonlinear in the di
rection 1』if

(10) 心 (u; 沙) • V〉(n; 沙) 쿠 0

and is called i-th convex or genuinely nonlinear if it is i-th convex or 
genuinely nonlinear in every direction za If this is the case, we shall 
normalize r》(u; v) by 孔(u; v} • 스(u; 沙) = 1.

The system is called convex or genuinely nonlinear if it is i-th convex 
or genuinely nonlinear for each i(l < i < n).
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3. The Proof of Main Theorem
Let be a C1 solution of (1) in a domain TV, and suppose that all 

i-Riemann invariants in the direction v are constant in N. We call 
u an i-rarefaction wave in the direction z/(or an i-simple wave in the 
direction z/). A planar centered wave with central plane at centered at 
(⑦⑴ 加) is a simple wave depending only on 스뜨긊으〉. Suppose that the 

i-th characteristic field is genuinely nonlinear in N in the direction z/, 
and let Ui e N. There exists a smooth one-parameter family of states 
쎄), defined for | sufficiently small, which can be connected to ui on 
the right by a z-planar centered wave. Since the i-Riemann invariants 
wui are constant, we have wyi{u) = w囚(ui), i = 1,2,... , n — 1. We 
introduce a parameter r by Xi(u; z/) = 사(?시； 少) + t. Define a function 
凡 : Rn x R — Rn by

Fy(u,T)= (Wpi(?z) — Wa(ttz),... ,wPn_i(?z) — ?◎—!(?//),

人(以; 沙) 一 沙) 一 r), ueW1.

By the implicit function theorem, the equation Fy(u^ r) = 0 defines a 
curve u = u(t;?씨, l/) depending on ui, for \r\ sufficiently small.

Theorem 3.1. Let the i-th characteristic field of the system (1) be 
genuinely nonlinear in N in the direction v, and normalized so that 
V/& • n = 1. Let ui be any point in N. There exists an one-parameter 
family of states u = u(r), 0 < r < e, ti(0) = ui, which can be con
nected to ui on the right by an ith planar centered wave. Moreover the 
parameterization can be chosen so that 쁘 = 孔 and 으흐 = 쓰.

It is obvious that a state ur can be joined to ui by an z-th planar 
centered wave with central line v • {x — xq) = 0,t = to if and only if ur 
is located on 2값(仙; 少), the integral curve of (7) with initial data ui in 
the ?z-space, and 〉\i(u; 以) increases when u varies from ui to ur along 
凡 (uz；z/). Changing direction i仏 凡(凶; 少) will form a horn-cone with 
vertex 凶, called the rarefaction wave cone denoted by 凡 (i이). In the 
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case when (1) is i-th convex, the horn-cone 凡(凶) is divided into two 
parts by the vertex ui, and ur can be joined to ui by an i-th planar 
centered wave if and only if ur belongs to a part of on which 
人(以r") > 九(仙； 沙)•

On the discontinuity plane
u • x 

s =-----
t

the generalized Rankine-Hugoniot jump conditions (4) implies

(12) 昌[씨 = 少 • [/]

where [씨 — ur — u\ and [/] = f(ur) — f (ui). The normal vector n = 
(—s, m) of (11) is chosen to point toward the side of ur.

For any fixed ui, 以, we consider the system

(13) s(u — ui) = v • (f(u) — f(ui))

which contains n equations but n+1 unknown variables 以 = (m, … , un) 
and s.

We assume that if the system (1) is genuinely nonlinear in the i- 
th characteristic field, so that VA》• 7% 羊 0, then 孔 is normalized by 
VAi • Ti — 1 and 匕 is normalized by 匕孔 = 1.

Theorem 3.2. Let the system (1) be hyperbolic in N, and let ui € 
N. Then there are n smooth one-parameter family of states u = 凶 (r), 
i = 1,2,... , n deSned for \t\ < 6心 where 凶(0) = ui, all of which satisfy 
the jump condition (12).

Thus the solution should be an 1-dimensional manifold expressed as

(14) U=U(T；Ui,l/)

s =S(T]Ui,l/)

where the parameter r is chosen so that

以(0;凶, 沙) = ui.
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We denote the curve u = 以(r; ui, v) in the u-space as S(ui； z/). The
orem 3.2 shows that S(ui； z/) consists of n branches in a neighborhood 
of ui, Si{ui\ z/) called the i-shock curve, (i = 1,2,..., n).

Corollary 3.2.1. Along the i-th shock curve, if the i-th charac
teristic Held is genuinely nonlinear, we can choose a parameterization 
so that 쓰(0) = ri, and $읏(0) = 豊, where 7% = 7%(?시). Moreover^ with 

this parameterization <s(0) = Xi(ui), and 豊(0) =

Theorem 3.3. (a) The shock speed of an i-shock is the aritheo- 
remetic average of the i-characteristic speeds on both sides of the shock, 
up to second-order terms in t.

(b) The change in an i-Riemann invariant across an i-shock is of 
third order in r.

Theorem 3.3 shows that each branch (凶; z/) is tangential to Ri(ug v) 
(i = 1,2,..., n) up to the second order if the system (1) is strictly hy
perbolic in the direction v. Changing direction 沙, Si(ui； v) will form a 
horn-cone with vertex called the shock wave cone, denoted by S》(itz). 
Any ur which can be joined to ui by the i-th discontinuity plane must 
be on Si(ui) (1 < i < n).

When (1) is》-th convex, in addition to ur € S'# (以z), the discontinuity 
plane must satisfy the stability conditions:

(15) AUX； 沙) < Wr； Ui, 沙) < Xi(ui； v}

(16) 九—1(?시; 沙) < 亂(石； 以1, 沙) < 入거引凶； 1八

where rr is defined so that u(rr;ui,i/) = ur, rr > 0.
A discontinuity will be called a shock wave if it satisfies the Rankine- 

Hugoniot condition and the stability conditions (15), (16) if (1) is con
vex.

Theorem 3.4. The stability conditions (15) and (16) hold along the 
curve u = 以乃 (r) if and only if r < 0.
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Proof. From Theorem 3.2 we can write Xj (r) = Aj(w(t);z/) and 
Sj(r\ y) = Sj(uk(r);i/). The stability conditions (9) and (10) can be 
written as

(i) Az(t; v) < Si(r, v) < 九(0; 沙),

(ii) Mi(0; v} < 亂(r; v} < Ai+i(r; 少).

Let 0(r; 少) = 人(r;z/) — 아(r;z/). Then 0(0; 少) = 0, 0'(0; 以) = VA^ • 
Tk — 쓰(0) = 1 — | > 0. Thus if (1) holds we see r < 0. On the 
other hand, if r < 0, then we see(》(r; 沙) < 0 so A^(r; v) < 亂(7"； 少). 

Also 쓰(0) = $ and \(0; v) = 亂(0; 少) imply 九(0；1/) > 亂(r;z/). Since 
Si(r; 沙) 一今 九(0; z/) > 九_1(0; z/) as t —今 0, we have 우(r; v) > 九_1(0; v} 
for small t. Finally Aj+i(O; v) > Ai(0; u) = 亂(0;z/) gives A》十i(r;z/) > 
우(t; 沙) for small t. This completes the proof. □

Define a composite curves through ui E A『 with the direction v as 
follows: For each i, 1 < i < n

(17) 山(")= (瓦M’ 广0’

W(丁； l丁 厂 之 0,

where Ui is the z-shock curve, and Ui is the i-planar wave curve. Then 
Theorem 3.1 and Corollary 3.2.1 yield the following theorem.

Theorem 3.5. The curves L&(r; z/); A; = 1,2,... , 7匕 have two con
tinuous derivatives at r.

Changing the direction z/, we have two cones which are composed 
of a shock wave cone and a rarefaction wave cone. In a general case, 
a discontinuity surface in the space (:r,i) of a solution of (1) can be 
approximated in a neighborhood of any regular point by a tangential 
plane at that point.

A system (1) is called i-th linear degenerate(or nonconvex) in the 
direction v if

(18) 江(u;z/) • VA(n; 沙) = 0
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Then by definition, /스(u;z/) is an i-Riemann invariant. Thus if u(t), 
\t\ < c, is the solution of the problem

du / / \ \ z xy— = 孔(以 (r);z/), n(0) = Ui,

then 쓰 = V/& • r人 = 0 implies that 人 is constant along this curve; i.e., 
A》(?i(t);z/) = /스(以(0); 少) = 人(仙; z/), \t\ < e. Now if |r| < 6, define a 
function v(⑦, by

= e< 서o사),
"유…), $>☆),

where Q = 쯔으. Then ?; is a solution of (1) with the initial condition

(19) W,0)上’、…으’

U(T； 沙), P • X > 0.

Lemma 3.6. Let v is a solution of (1) and (19). Then v satisfies the 
following jump condition:

(20) //•[/] = 5[씨,

where [f] = /(tgr; 沙)) — f (ui), [u\ = u(r; v} - uh and s = A(凶; 少), on 
the hyperplane f = 人(쎄/).

A solution u of (1) is called a contact discontinuity in the direction 
v if the shock speed equals the characteristic speed on one side. The 
Lemma 3.6 gives

Theorem 3.7. If two nearby states ui and ur have the same i- 
Riemann invariants with respect to a linearly degenerate Held, then 
they are connected to each other by a contact discontinuity of speed 
3 = 人(씨; z/) = 사(G； 沙).
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When (1) is not 2-th (i = 1, 2,..., 7z) convex the discontinuity plane 
has to satisfy the following stability conditions:

(21) Si(T； Ui, z/) > 亂(Tr； Ui, z/), T e [0, Tr]

(22) 〉、i—i(ui； 沙) < 亂(77； Ui, 少) < Ai+1(G； z/)

Now we will prove the initial value problem which is called the Rie
mann problem. In order to prove this, we assume that (1) is strictly 
hyperbolic, and that in N each characteristic field is either genuinely 
nonlinear or linearly degenerate. Moreover we also assume that |r| 
is so small that the curves L&(r;z/) defined by (17) all exist provided 
that the zth characteristic field is genuinely nonlinear, and that if 
the zth characteristic field is linearly degenerate, the curves satisfying 
dv/dr = rk(uk(r)) all exist.

Theorem 3.8. Let ui E N and suppose that the system (1) is hy
perbolic and each characteristic field, is either genuinely nonlinear or 
linearly degenerate in N. Then there is a neighborhood Nq C N of ui 
such that if ur € Nq, then Riemann problem (1) and (2) has a solution. 
This solution consists of at (n +Inconstant states separated by shocks, 
rarefaction waves, or contact discontinuities.

Proof. From Theorem 3.5 and Theorem 3.7, for each i = 1,2,... ,n, 
there exists an one-parameter family of transformations

아 : 川느 |지 <€,

which is C2 in 江, with the property that any u E N can be joined 
to LlT.u on the right by either a shock, rarefaction wave, or contact 
discontinuity depending on the ^-characteristic field and the sign of |r|.

Let ui be any point in N, and define U = {(石, … ,7示) G Rn : 
\rj\ < e, i = 1,... ,n}. We consider the composition transformation 
L : [/ —今 Rn given by L(r) = L1시고 … L느ut, t = (孔,... , Tn). Our 
goal is to show that there is f in L『 such that T(〒)ui = ur, provided 
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that \ur — ui\ is small. To this end, we define a mapping F : L『 一> Rn 
by

乃(n, •••,<) = L흐L&亡 … Lgui — ui.

Then F(0,... , 0) = 0, and since

L^.u = u + 孔孔씨; z/) + O(rf), A; = 1,... , n,

we have
n

F(J1, …，而) = 乞 江7%(凶; 以)+ 0(니). 

i=l
This implies that DF(0?... ,0) =(7i(?z; z/),... , rn(u; z/)). Since this 
latter matrix is nonsingular, the inverse function theorem shows that F 
is a homeomorphism of a neighborhood of r = 0 onto a neighborhood of 
u = 0. Therefore, if \ur — 이 is small, there is a unique f = (五,...，자) 

such that F(〒i,... ,fn) = ur — ui. That is,

LTnLTn-l - - - 仙 ~ Uf = Ur ~ ?시 ,

or
江:丄：己 …가—，.

This completes the proof. □

4. Example

In this section we will consider the example of isothermal flow in gas 
dynamics. The flow is modeled by the following system of conservation 
laws:

{
Pt + 十 ((6 = 0
((m)t + (pu2 + P)x + (pw)y = 0
(/w)t + (puv)x + (pv2 十 日厂= 0

where (tt,?;), p > 0 and p > 0 represent velocity, pressure and density 
respectively, p = p(p) is a given state function which is of the form 
p = p7 in the case of a polytropic gas, 7 > 1 is the so-called adiabatic
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exponent constant. For a smooth solution, this equation (14) can be
rewritten as

(24)

0 0 \ fu\
沙 P\p)/p N = 0
P v ) 이

From (6) and (24), the characteristic equation

l^u + uv — A 0
0 i』/u 斗- i』v — A

I사) i사)

"'(P)/P
"'(P)/P = 0

l』/u + pv — A

gives the three characteristics

Ao = /丄以 + n.

A士 = 사以 十 iw ± y/p\p).

Thus (23) is a strictly hyperbolic in the plane (?z, v, p) with p > 0. 
The characteristics Ao and A士 are called flow characteristic and wave 
characteristics, respectively. The eigenvector r()corresponding to flow 
characteristics is

孔 = (―少,凶0).

Since r()• VAo = 0, (23) is linear degenerate corresponding to flow 
characteristics. The rarefaction wave Ro(、ui,vi, pi\n) in the direction 
n = (/i, z/) is a straight line:

f
[jl(u — Ui) + v{y — ⑴) = 0 
p — pi = 0.

Changing the vector n, we have the rarefaction wave cone 2?o(uz, Vi, pi) 
which is the plane

(25) P = Pi-
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For eigenvector r土 = (±/z, ±z/, —7으=) corresponding to A土, the rela- 
\/p'(p)

tion

(26) -==+* 쓰r⑵

implies that (27) is convex corresponding to A土 if pp" + 2以' > 0 (p > 
0). The rarefaction wave cone R土(、ui,vi, pi；n) can be expressed as

(27) 士M『 — dr = u — %, 土,「— dr = v — v,
J pi T J pi T

Changing the vector n, we have the rarefaction wave cone 2?土 (以方 幼, pi) 

2

(28) (u — U[)2 + (v - vi)2

Rankine-Hugoniot jump condition

斗 P — Pi) = 山jm — piui) + 1八 pv — pivi)
s(pu — piui) = /i(/m2 — puf + p(p) — r(pi)) + 1八 puv — piUivt) 
s(pv — pivi) = 山jmv — piuivi) + i八 pv2 — pv{ + p(p) — r(pi))

gives the relation

쌔
Pi(J丄ui 十 vvi — s) 

0
0

Pi(jwi + i八)i — s)

flUi + PVi - S 
M[P" = 0.

The shock wave So(凶，幼, ⑵； n) and S士(凶，⑴, ⑷; n) is

{
/i(u — Ui) + 1八 V — ⑴) = 0 
p- pi = Q
S = Sq = p/lli + W
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and

w —이 = ±/i(p —⑷) (느 X 영끄) ,

(3°) \ v-vi = ±" — Pl) (人 X 영끄) ,

k G = 土@z + W 土 (우 x 부끔) ，

respectively. We note that Sq(ui,vi, pi；n) (resp. So(waPz)) is the 
same as Ro(ui, pi； n) (resp. Rq(ui,vi, pi)). The shock wave cone 
S土(ui,vi, pg are the same circular cone

(31) (u — uif + (v — 幼)2 = —(p — pi)(p — pi).
PPi

If the Rankine-Hugoniot condition hold and (ur,vr, pr) e S노 

then the stability condition

(32) A士슈; n) < 昌士 < X土(ui,vhpi；n) (pr 으 pi)

holds. For convenience, we will consider only the case p(p) = p2. Then 
from the relation (24), (27), (29) and (30), shock wave and rarefaction 
wave in the direction n = (ji, z/) are of the form

(33)

: jLL(U •— Ui) + l八V _ Vi) 
S0(ui, vh Pl； n) = Ro(uh vh Pi\n) = { }

= 0,p — pi = 0

(u,v,(i) : 士 以서/2 — 日/2) = 以 一 t시,

(34) 丘土 (uwz；n) = { }
土 V、、『》〉{、引‘1 — Pl ) = V _ Vi
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and

(35) S土 (ui,vi,pr,ii) = { (u, v, p) : u — ui = ±//(p —p山/으士쓰,

V PPi

(36) v - ⑴ = 土少(p — 리서으 }

V PPi 

where s0 = Pi + " and s士 = p/ui + w ± ggp + pi)) ' . Changing 

the vector n, we have shock wave cone and rarefaction wave cone:

So(ui, ⑴, Pi) = Ro(ui, Vh Pi) = {(的 以 P)； P = Pi},

R土(uwi) = 故…, p) : (以— 凶)2 + (沙 —• 幼)2 = 8(p1/2 —』/2)2 J 

S'士(ui, Vi, pl) = | (u, v, p) : (w _ Ui)2 + (v - ⑵)2 =  ----빠:——— } .

Since 8Q01'2 — 日'2)2 < 스쓰———一乃)⑴———, the rarefaction wave cone 

7?士(凶, 仙,/刀) is contained in the shock wave cone S'土(凶, ⑴, ⑵)(Figure 
3.1)

Figure 3.1.u
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Now we resolve the solution of the Riemann problem to (23) with 
initial data

(37) (p,u,v)(x,y,0) = <
(pi,ui,vi), x>0, 
(pr,t사,？사), :r < 0.

In this case, n = (1,0). From (33), (34) and (35), we have

(38)

日0(以z,幼, A；n) = J?o(凶,⑴,⑷;n) = {(沙,？;,p) : u = ui,p_ pi = Q}

R土(Ui,wprm) = {(以,引 p) : 노 니2 — g/2) = u — Ui,v = Vi\ 

and

(39)

S土 (ui,vi,pi；ii) = |( 以，凶 p) : u-ui = 士 (p — pg I으헤1, v = 山

Figure 3.2.
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Ub pr = pl and 
P The solutions 
solution v has a

where s0 = ui and 昌土 = 凶 土 (g(p + pi})니2. For convenience we will 

only consider three cases: (a) (ur,vr, pr) E So = i?o, (b) (ur,vr, pr) G 
S+, and (c) (ur,vr, pr) e

Case (a): If (ur,vr, pr) e Sq = Rq, then ur = 
vr < ⑴(or vr > Vi). From (29), we have s0 = ui = 
u and p are constant states for all times. But the 
contact discontinuity with a speed sq = ui. Thus solutions are depicted 
as Figure 3.2:

Case (b): If (ur,vr,pr) 6 then ur > pr > pi and vr = Vi， 
From (30), we have 아_ = w+• (우(p —b ⑵)) ' . The solution v is constant 

states for all times. But the solutions u and p have planar shock wave 
1/2

. Thus solutions are depictedwith a speed = 仙 + (바(pr + pi)) 

as Figure 3.3:

4 i

Figure 3.3.
Case (c): If (ur,vr,pr) E then ur > pr > pi and vr = 山.

From Theorem 3.1, we have A+(u/) = ui + y/2pi < y < ur + y/2pr = A十.
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The solution v is constant states for all times. But the solutions u and p 
have planar rarefaction waves with a speed between 入+•(以z) and A__(ur). 
Thus solutions are depicted as Figure 3.4:

Figure 3.4.
4. Large Initial Data

(40)

Conway and Smoller[2] proved the existence of solutions of (1) in 
scalar case(i.e. N = 1) with the initial data u(x, 0) which is bounded 
and of bounded variation in the sense of Tonelli-Cesari:

\u(x + h) — u{x) \ dx < const - |h|

for any compact Q and any vector h G Rn, where the constant does not 
depend on h. Let the half-space t > 0 be covered by a grid defined by 
the planes

t = Xi = mi自아引 》= !,••• , n

where Ai and A》are fixed positive real numbers, k runs through the 
non-negative integers, and m#, i = 1, • • • , n assume all integral values.
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In the region t > 0, they consider the finite difference method proposed 
by Lax and Oleinik[6]:

(41)

眠1-시Z1«+1 + _ A /3'(<+i) - 1) = 0
Ai 아=1 2^Xj

where m = (mi, • • • , mn), m, ± 1 = (mi, • • • , m, ± 1, … , mn) and 
= 以(miAxi, … , mnMn, kAt). They proved

Theorem 4.1. [2] Let i = 1, • • • , n be continuously differentiable 
functions of a single real variable. If u0(x) is bounded and of bounded 
variation in the sense of Tonelli-Cesari, then there exists a function 
u(t, x) which is a weak solution of (1) in the region t > 0 having uq{x) 
as initial value. Moreoverfor each fixed t, x) is also bounded and 
of bounded variation, and u(t, x) has the same upper and lower bounds 
asu()(x).

Vol’pertflO] and Kruzkov[5] also proved the same result as Theorem 
4.1 using the vanishing viscosity method. Kruzkov construct a theory of 
generalized solutions in the large of Cauchy problem for the equations

n 丁
(42) ut + yZ J—广#’ ⑦’ 인) + 9(2, ⑦W)= 0

2=1 Xl

in the class of bounded measurable functions. He define the general
ized solution and prove existence uniqueness and stability theorems for 
this solution. To prove these theorem, he first consider the Cauchy’s 
problem for the corresponding parabolic equation

n 己
(43) Ut + S2 ⑦, u) + g(〔t, x, u) = eAu, e > 0,

“ dXi2=1
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and derive a priori estimates

(44) [ |t广(t, x + A:r) — t广(i, :r)| ch 드 gl$(|A:z:|)

(45) ^ue(t + At,x) —여(V：)| ☆ 드 시(|Ai|)

Ai 으
= C°nSt n핏以 [九 十 硏 (⑵ 十 “T ]0느/g으! fl/

(46) / \ue(s,x) — u()(x)\dx < ^(5)

. 止 (0；r);

for any r > 0 and s G [0,T], where uj(h) is a modulus of continuity 
type functions and the constant does not dependent of €. Passing to 
the limit as e —> 0, the solution ue of (43) and (2) converges to u almost 
everywhere.
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