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THE GENERALIZED RIEMANN PROBLEM FOR FIRST
ORDER QUASILINEAR HYPERBOLIC SYSTEMS OF

CONSERVATION LAWS I

Shouxin Chen, Decheng Huang, and Xiaosen Han

Abstract. In this paper, we consider a generalized Riemann problem of
the first order hyperbolic conservation laws. For the case that excludes
the centered wave, we prove that the generalized Riemann problem admits
a unique piecewise smooth solution u = u(t, x), and this solution has a
structure similar to the similarity solution u = U

`
x
t

´
of the corresponding

Riemann problem in the neighborhood of the origin provided that the
coefficients of the system and the initial conditions are sufficiently smooth.

1. Introduction

Consider the first order quasilinear hyperbolic systems of conservation laws

(1.1)
∂u

∂t
+

∂f(u)
∂x

= 0,

where u = (u1, . . . , un)T is an unknown vector function of (t, x), x ∈ R, t > 0,
and f : Rn → Rn is a smooth function of u. Assume that the system (1.1)
is strictly hyperbolic on the domain under consideration, i.e., A(u) = ∇uf(u)
has n real distinct eigenvalues:

(1.2) λ1(u) < λ2(u) < · · · < λn(u).

Let li(u) = (li1(u), . . . , lin(u)) and ri(u) = (ri1(u), . . . , rin(u))T be the left
eigenvector and right eigenvector corresponding to the eigenvalue λi(u), i =
1, . . . , n, respectively. Without loss of generality, we may assume that

(1.3) li(u) · rj(u) = δij , (i, j = 1, . . . , n),

where δij is the Kronecker’s symbol. Obviously, λi(u), li(u) and ri(u)(i =
1, . . . , n) have the same regularity as A(u).
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We prescribe the following piecewise constant initial data:

(1.4) t = 0 : u =

{
ûl, x ≤ 0,

ûr, x ≥ 0,

where ûl and ûr are constant vectors satisfying:

(1.5) ûl 6= ûr.

We first give the following hypothesis:
(H1) The Riemann problem (1.1), (1.4) admits a similarity solution u =

U
(

x
t

)
, which is composed of n+1 constant states û0 = ûl, û1, . . . , ûn−1, ûn =

ûr and n waves through the origin (containing shock wave, rarefaction wave or
contact discontinuity), the states ûi−1 and ûi are connected by the i-th wave
(i = 1, . . . , n).

For a general quasilinear hyperbolic systems of conservation laws, under the
assumption that every eigenvalue λi(u) is either genuinely nonlinear in the
sense of P. D. Lax:

(1.6) ∇λi(u) · ri(u) 6= 0,

or linearly degenerate in the sense of P. D. Lax:

(1.7) ∇λi(u) · ri(u) ≡ 0.

P. D. Lax [8] proved that the Riemann problem (1.1), (1.4) admits a unique
similarity solution u = U

(
x
t

)
provided |ûr − ûl| is sufficiently small, which

is composed of n small amplitude waves. In this paper, we only consider a
similarity solution u = U

(
x
t

)
given by (H1), regardless of its uniqueness, also

disregarding whether its n waves having small amplitude or not.
In this paper, we consider the system (1.1) with the following discontinuous

initial data:

t = 0 : u =

{
ûl(x), x ≤ 0,

ûr(x), x ≥ 0,
(1.8)

where ûl(x) and ûr(x) are given smooth vector functions defined on x ≤ 0 and
x ≥ 0 satisfying

ûl(0) = ûl, ûr(0) = ûr,

respectively. Since the generalized Riemann problem (1.1), (1.8) may be re-
garded as a perturbation of the corresponding Riemann problem (1.1), (1.4),
we naturally study the following local problem:

In which condition, the generalized Riemann problem (1.1), (1.8) admits a
unique piecewise smooth solution u = u(t, x) which possesses a similar structure
in a neighborhood of the origin as the solution of the corresponding Riemann
problem (1.1), (1.4). Namely, the solution still contains n waves through the
origin, for any i (i = 1, . . . , n), the type of the i-th wave is same as the i-th
wave of the similarity solution u = U(x

t ); the i-th wave coincides with the i-th
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wave of u = U
(

x
t

)
at the origin. Moreover, the i-th wave links two known

states ûi−1 and ûi.
Tikhonov and Samarsky [20] discussed the problem in the case of a single

equation (n = 1). The earliest studies for the case of systems were as follows:
one-dimensional isentropic flow systems (n = 2) was discussed in [2], Gu, Li and
Hou [3, 4, 5, 6] discussed the general reducible systems (n = 2). Furthermore, in
[1, 10, 11] one-dimensional gas dynamics systems (n = 3) was studied. All the
above articles were devoted to investigation of arbitrary discontinuity |ûr − ûl|
of the initial data. For the general first order quasilinear hyperbolic systems
of conservation laws, Li and Yu [12, 13, 14, 15, 16, 17] have shown that the
problem admits a unique local solution when |ûr − ûl| is sufficiently small for
the corresponding similarity solution u = U

(
x
t

)
with small amplitude, provided

that all the eigenvalues are genuinely nonlinear or linearly degenerate in the
sense of P. D. Lax. Li [9] thought the result was still valid for the case where
the discontinuity |ûr− ûl| is arbitrary and n waves are composed of shocks and
contact discontinuities, while not giving the proof. In this paper, we shall give a
complete proof for that case. For the case that includes centered waves, we deal
with it in a forthcoming paper. For more related results, see the monographs
[7, 19].

2. Main results

Suppose that we prescribe a similarity solution u = U(x
t ) of the Riemann

problem, which is composed of n+1 constant states û0 = ûl, û1, . . . , ûn−1, ûn =
ûr and n waves (see Figure 1), in Figure 1,

Figure 1. Similarity solution of Riemann problem

(2.1) OÂ±k : x = σ̂±k t, (k = 1, . . . , n),
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is the right (left) boundary of the k-th wave, ûk is the constant state between
OÂ+

k and OÂ−k ; the eigenvalues λ̂
(k−1)
1 , . . . , λ̂

(k−1)
k−1 and λ̂

(k)
k+1, . . . , λ̂

(k)
n labeled

on both sides of OÂ−k+1 are called “coming characteristics”, where

λ̂
(i)
j = λj(ûi), (i = 1, . . . , n− 1; j = 1, . . . , n).

Our aim is to investigate in what condition, the generalized Riemann prob-
lem (1.1), (1.8) admits a unique piecewise smooth solution that possesses a
similar structure (see Figure 2), namely, any wave through the origin

OA±k : x = x±k (t), (x±k (0) = 0) (k = 1, . . . , n)

has the same type (shock wave, contact discontinuity or centered wave) as

1A

nA

kA−

kA+

u (t,x)1

u (t,x)
0

u   (t ,x)k - 1

u   (t ,x)n - 1

u (t,x)
k

u (t,x)n

2

(1)

n

(1)

1

(k-1)

k-1

(k-1)

k-1

(k)

n

(k)

1

(n-1) n
(n-1)

O X

Figure 2. Solution of generalized Riemann problem

OÂ±k in the solution of the Riemann problem (1.1), (1.4), and

x±k (0) = σ̂±k , (k = 1, . . . , n),

where σ̂±k are given by (2.1). u0, . . . , un satisfy the system (1.1) in the classical
sense on their respective domains, and

(2.2) uk(0, 0) = ûk, (k = 0, . . . , n).

For the case of the k-th (1 ≤ k ≤ n) wave being a shock wave or a contact
discontinuity, we have

{
σ̂+

k = σ̂−k ,

OÂ+
k = OÂ−k ,
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denoting them σ̂k and OÂk, respectively. On OÂk the following Rankine-
Hugoniot condition:

(ûk − ûk−1)σ̂k = f(ûk)− f(ûk−1)

must be satisfied and since it must satisfy the entropy condition if OÂk is a
shock wave, and be the k-th characteristic line if OÂk is a contact discontinuity,
combining (1.2) one yields

{
λ1(ûk−1) < · · · < λk−1(ûk−1) < σ̂k ≤ λk(ûk−1),

λk(ûk) ≤ σ̂k < λk+1(ûk) < · · · < λn(ûk),
(2.3)

where “=” corresponds to the contact discontinuity; “<” corresponds to the
shock wave.

For the corresponding generalized Riemann problem, set

OAk = OA+
k = OA−k : x = xk(t),

then xk(t) satisfies

(2.4) x′k(0) = σ̂k.

On both sides of OAk uk−1(t, x) and uk(t, x) have to satisfy the Rankine-
Hugoniot condition
(2.5)

(uk(t, x)− uk−1(t, x))
dxk(t, x)

dt
= f(uk(t, x))− f(uk−1(t, x)) on x = xk(t),

and by (2.2), (2.3), noting the continuity and the property of contact disconti-
nuity, at least in a neighborhood of the origin it follows that

{
λ1(uk−1(t, x)) < · · · < λk−1(uk−1(t, x)) < x′k(t) ≤ λk(uk−1(t, x)),

λk(uk(t, x)) ≤ x′k(t) < λk+1(uk(t, x)) < · · · < λn(uk(t, x)),
(2.6)

where “=” corresponds to the contact discontinuity; “<” corresponds to the
shock wave. By (2.6) we can label the “coming character” λ

(k−1)
i (i = 1, . . . , k−

1) and λ
(k)
i (i = k + 1, . . . , n) on both sides of OAk, where





λ
(k−1)
i = λi(uk−1(t, x)), (i = 1, . . . , k − 1),

λ
(k)
i = λi(uk(t, x)), (i = k + 1, . . . , n).

Let




uk−1 =
n∑

i=1

vk−1
i ri(ûk−1),

uk =
n∑

i=1

vk
i ri(ûk), (i = 1, . . . , n).
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Then it follows from (1.3) that
{

vk−1
i = li(ûk−1)uk−1,

vk
i = li(ûk)uk, (i = 1, . . . , n).

(2.7)

We present the following hypothesis:
(H2) The Rankine-Hugoniot condition (2.5) can equivalently be written as

the explicit form of those variables v corresponding to “coming characteristics”.
Precisely speaking, the Rankine-Hugoniot condition on OAk can be written as

(2.8)
dxk(t, x)

dt
= Fk(uk−1, uk), xk(0) = 0,

{
vk−1

i = gk−1
i (vk−1

k , . . . , vk−1
n , vk

1 , . . . , vk
k), (i = 1, . . . , k − 1),

vk
j = gk

j (vk−1
k , . . . , vk−1

n , vk
1 , . . . , vk

k), (j = k + 1, . . . , n).
(2.9)

Remark 2.1. To verify the hypothesis (H2), we only need to use the implicit
function theorem.

If OAk is a shock wave, it is easy to prove the hypothesis (H2) is fulfilled
provided that

det(r1(ûk−1), . . . , rk−1(ûk−1), ûk − ûk−1, rk+1(ûk), . . . , rn(ûk)) 6= 0

If OAk is a contact discontinuity, assume λk(u) is linearly degenerate in
the sense of P. D. Lax, then the Rankine-Hugoniot condition on OAk can
equivalently be written as

ωi(uk) = ωi(uk−1), (i = 1, . . . , k − 1, k + 1, . . . , n),

dxk(t)
dt

= λk(uk−1)(= λk(uk)),

where ωi(u) are n−1 independent Riemann invariants corresponding to λk(u),
defined as follows:

∇ωi(u) · rk(u) = 0.

Obviously, if

det
( ∇ωi(ûk−1) · rj(ûk−1) ∇ωi(ûk) · rj(ûk)

(j = 1, . . . , k − 1) (j = k + 1, . . . , n)

)
6= 0

where i = 1, . . . , k − 1, k + 1, . . . , n, then (H2) is fulfilled.

Remark 2.2. (2.6) implies that u0(t, x) and un(t, x) can be respectively obtained
by solving the Cauchy problem with initial data ūl(x) and ūr(x), hence, if OAk

is a shock wave or a contact discontinuity, then the Rankine-Hugoniot condition
can be written as

(2.10)
dx1(t)

dt
= F1(t, x, u1), x(0) = 0,

(2.11) v1
i = g1

i (t, x, v1
1), (i = 2, . . . , n).
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Likewise, if OAn is a shock wave or a contact discontinuity, then the Rankine-
Hugoniot condition can be written as

(2.12)
dxn(t)

dt
= Fn(t, x, un−1), x(0) = 0,

(2.13) vn−1
j = gn−1

j (t, x, vn−1
n ), (j = 1, . . . , n− 1).

In what follows we write two groups of n(n− 1)× n(n− 1) matrices Θj(j =
1, 2, . . .) and Θ̄j(j = 0, 1, . . .), and then obtain the main results.

Let 



τk
i =

bλk
i−bσ+

k

bλk
i−bσ−k+1

, (i = 1, . . . , k),

τk
i =

bλk
i−bσ−k+1
bλk

i−bσ+
k

, (i = k + 1, . . . , n),
(k = 1, . . . , n− 1),(2.14)

where λ̂k
i = λi(ûk), σ̂±i are given by (2.1). Obviously,

0 ≤ τk
i < 1 (i = 1, . . . , n; k = 1, . . . , n− 1).

For k(1 ≤ k ≤ n) corresponding to the shock wave or the contact disconti-
nuity, let





(Θj)n(k−2)+p,n(k−2)+q = (Θ̄j)n(k−2)+p,n(k−2)+q

=
∂gk−1

p

∂vk−1
q

(τk−1
q )j , (q = k, . . . , n),

(Θj)n(k−2)+p,n(k−1)+q = (Θ̄j)n(k−2)+p,n(k−1)+q

=
∂gk−1

p

∂vk
q

(τk
q )j , (q = 1, . . . , k),

(Θj)n(k−2)+p,q = (Θ̄j)n(k−2)+p,q = 0,

(q < n(k − 2) + k or q > n(k − 1) + k), (p = 1, . . . , k − 1),

(2.15)





(Θj)n(k−1)+p,n(k−2)+q = (Θ̄j)n(k−1)+p,n(k−2)+q

=
∂gk

p

∂vk−1
q

(τk−1
q )j , (q = k, . . . , n),

(Θj)n(k−1)+p,n(k−1)+q = (Θ̄j)n(k−1)+p,n(k−1)+q

=
∂gk

p

∂vk
q

(τk
q )j , (q = 1, . . . , k),

(Θj)n(k−1)+p,q = (Θ̄j)n(k−1)+p,q = 0,

(q < n(k − 2) + k or q > n(k − 1) + k), (p = k + 1, . . . , n),

(2.16)

where the functions on the right side of (2.15) and (2.16) take values on t =
0, x = 0, vi = v̂i(i = 1, . . . , n−1), (2.11), (2.13) imply that (Θj)pq(j = 1, 2, . . .)
and (Θ̄j)pq(j = 0, 1, . . .) do not have elements not vanishing until 1 ≤ p ≤
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n(n − 1), 1 ≤ q ≤ n(n − 1), thus we define two groups of n(n − 1) × n(n − 1)
matrices Θj(j = 1, 2, . . .) and Θ̄j(j = 0, 1, . . .) depending only on the solution
of the Riemann problem.

Let the n(n− 1)× n(n− 1) diagonal matrix τ be

(2.17) τ = diag{τ1
1 , . . . , τ1

n, . . . , τn−1
1 , . . . , τn−1

n }.
For N × N matrix A = (aij) define the following minimal characterizing

number:
‖A‖min = inf

γ
‖γAγ−1‖,

where γ = diag{γ1, . . . , γN}, γi 6= 0 (i = 1, . . . , N), and

‖A‖ = max
i=1,...,N

N∑

j=1

|aij |.

We get the following main theorems:

Theorem 2.1. Under the hypotheses (H1),(H2), if f(u), ûl(x), ûr(x) are Cm+1

functions, then if

det |I −Θj | 6= 0 (j = 1, . . . , n− 1),

(2.18) ‖Θ̄m‖min < 1,

the generalized Riemann problem (1.1), (1.8) admits a unique piecewise Cm+1

local solution u = u(t, x) except the origin, which possesses a similar structure
at least in a neighborhood of the origin with the given similarity solution of the
Riemann problem (1.1), (1.4).

Remark 2.3. As long as one introduces the reversible transformation v̄ = γv of
the unknown function, where

γ = diag{γ1, . . . , γn(n−1)}, γi 6= 0 (i = 1, . . . , n(n− 1)),

v = (v1
1 , . . . , v1

n, . . . , vn−1
1 , . . . , vn−1

n )T ,

then Θ̄j is reduced to γΘ̄jγ
−1, hence in the proof of Theorem 2.1 we can

substitute
‖Θ̄m‖ < 1

for (2.18).

Theorem 2.2. Under hypotheses (H1), (H2), if f(u), ûl(x), ûr(x) are C∞ func-
tions, then

det |I −Θj | 6= 0, (j = 1, 2, . . .)

if and only if the generalized Riemann problem (1.1), (1.8) admits a unique
piecewise C∞ local solution u = u(t, x) except the origin, which possesses a
similar structure at least in a neighborhood of the origin with u = U

(
x
t

)
.
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Remark 2.4. Theorems 2.1, 2.2 remain valid for more general hyperbolic sys-
tems of conservation laws

∂u

∂t
+

∂f(t, x, u)
∂x

= g(t, x, u),

and the system of corresponding Riemann problem is

∂u

∂t
+∇uf(0, 0, u)

∂u

∂x
= 0.

3. Proof of main results

We consider the generalized Riemann problem of the following form:

(3.1)
∂u

∂t
+

∂f(t, x, u)
∂x

= g(t, x, u),

t = 0 : u =

{
ûl(x), x ≤ 0,

ûr(x), x ≥ 0,
(3.2)

where f is Cm+2 with respect to x and u, Cm+1 with respect to t, and g, ûl, ûr

are Cm+1 functions of all arguments. Suppose a similarity solution u = U
(

x
t

)
of its corresponding Riemann problem

(3.3)
∂u

∂t
+∇uf(0, 0, u)

∂u

∂x
= 0,

t = 0 : u =

{
ûl = ûl(0), x ≤ 0

ûr = ûr(0), x ≥ 0
(3.4)

is composed of n + 1 piecewise constant states û0 = ûl, û1, . . . , ûn−1, ûn = ûr

and n shocks or contact discontinuities. We shall prove the generalized Riemann
problem (3.1), (3.2) admits a unique piecewise Cm+1 solution which has a
similar structure.

Assume the matrix ζ(t, x, u) is composed of n left eigenvectors l1, l2, . . . , ln
of ∇uf(t, x, u), and its every element is a piecewise Cm+1 function. Moreover,
in AkOAk+1 (k = 1, . . . , n− 1) we can always take

(3.5) ζij(0, 0, ûk) = δij , (i, j = 1, . . . , n).

Multiplying (3.1) by ζ from the left, we obtain the characteristic form

(3.6) ζ(t, x, u)
∂u

∂t
+ λ(t, x, u)

∂u

∂x
= µ(t, x, u),

where ζ, λ, µ ∈ Cm+1,

λ(t, x, u) = diag{λ1(t, x, u), . . . , λn(t, x, u)},
λ1(t, x, u) < λ2(t, x, u) < · · · < λn(t, x, u)
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on the domain under consideration. Then (2.3) implies that u0(t, x) and
un(t, x) can be respectively obtained by solving the Cauchy problem (3.1) with
initial data ûl(x) and ûr(x) in a neighborhood of the origin, set

OAk : x = xk(t), (k = 1, . . . , n).

To get the solution of the generalized Riemann problem (3.1), (3.2), we only
have to solve the free boundary problem on the fan-shaped domain

n−1⋃

k=1

Dk(δ) = {(t, x) | 0 ≤ t ≤ δ, xk(t) ≤ x ≤ xk+1(t)},

whose solutions uk(t, x) satisfy equation (3.1) on Dk(δ), and

uk(0, 0) = ûk, (k = 1, . . . , n− 1).

Furthermore, free boundaries OAk (k = 1, . . . , n) satisfy (2.8), (2.10) and
(2.12), and uk−1, uk satisfy the Rankine-Hugoniot conditions (2.9), (2.11) and
(2.13) on both sides of OAk. Noting (2.7) and (3.5), we now have

uk(t, x) = vk(t, x), (k = 1, . . . , n− 1).

Let

(3.7) Tk(t) =
xk+1(t)− xk(t)

t
, (0 ≤ t ≤ δ), (k = 1, . . . , n− 1).

We introduce the following transformation




t̄ = t,

x̄ =
x− xk(t)

Tk(t)
on Dk(δ), (k = 1, . . . , n− 1 and k is odd ),





t̄ = t,

x̄ =
x− xk+1(t)

Tk(t)
on Dk(δ), (k = 1, . . . , n− 1 and k is even).

Thus all Dk(δ) (k = 1, . . . , n− 1) are changed to the domain

D̄(δ) = {(t̄, x̄) | 0 ≤ t̄ ≤ δ, 0 ≤ x̄ ≤ t̄}.
Moreover, OAk(k = 1, . . . , n) are respectively mapped onto x̄ = 0 and x̄ = t̄
for odd k and even k. Set

ūk(t̄, x̄) = uk(t̄, xk(t̄, x̄)), (k = 1, . . . , n− 1),

where

(3.8) xk(t̄, x̄) =

{
xk(t̄) + x̄Tk(t̄) for odd k,

xk+1(t̄)− x̄Tk(t̄) for even k.

Then ūk(k = 1, . . . , n− 1) satisfy

(3.9)
n∑

i=1

ζ̄k
li(t̄, x̄|ūk)

(
∂ūk

i

∂t̄
+ λk

l (t̄, x̄|ū)
∂ūk

i

∂x̄

)
= µ̄k

l (t̄, x̄|ūk), (l = 1, . . . , n),
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(3.10) ūk
r = Gk

r (t̄ |ūk
k+1, . . . , ū

k
n, ūk+1

1 , . . . , ūk+1
k+1) on x̄ = t̄, (r = 1, . . . , k),

(3.11) ūk
s = Gk

s(t̄ |ūk−1
k , . . . , ūk−1

n , ūk
1 , . . . , ūk

k) on x̄ = 0, (s = k +1, . . . , n)

for odd k, and

(3.12) ūk
r = Gk

r (t̄ |ūk
k+1, . . . , ū

k
n, ūk+1

1 , . . . , ūk+1
k+1) on x̄ = 0, (r = 1, . . . , k),

(3.13) ūk
s = Gk

s(t̄ |ūk−1
k , . . . , ūk−1

n , ūk
1 , . . . , ūk

k) on x̄ = t̄, (s = k + 1, . . . , n)

for even k, where

(3.14) ζ̄k
li(t̄, x̄|ūk) = ζli(t̄, xk(t̄, x̄), ūk), (l, i = 1, . . . , n; k = 1, . . . , n− 1),

λk
l (t̄, x̄ |ū) =

(
(−1)k+1λl(t̄, xk(t̄, x̄), ūk)− ∂xk(t̄, x̄)

∂t̄

) /
Tk(t̄),(3.15)

(l = 1, . . . , n; k = 1, . . . , n− 1),

(3.16) µ̄k
l (t̄, x̄ |ūk) = µl(t̄, xk(t̄, x̄), ūk), (l = 1, . . . , n; k = 1, . . . , n− 1),

and ū = (ū1, . . . , ūn−1). As k is odd, we have

Gk
r (t̄|ūk

k+1, . . . , ū
k
n, ūk+1

1 , . . . , ūk+1
k+1)

(3.17)

= gk
r (t̄, xk+1(t̄), ūk

k+1(t̄, t̄), . . . , ū
k
n(t̄, t̄), ūk+1

1 (t̄, t̄), . . . , ūk+1
k+1(t̄, t̄)), (r = 1, . . . , k),

Gk
s(t̄|ūk−1

k , . . . , ūk−1
n , ūk

1 , . . . , ūk
k)

(3.18)

= gk
s (t̄, xk(t̄), ūk−1

k (t̄, 0), . . . , ūk−1
n (t̄, 0), ūk

1(t̄, 0), . . . , ūk
k(t̄, 0)), (s = k + 1, . . . , n),

in addition
(3.19)



dxk+1(t̄)
dt̄

= Fk+1(t̄, xk+1(t̄), ūk
k+1(t̄, t̄), . . . , ū

k
n(t̄, t̄), ūk+1

1 (t̄, t̄), . . . , ūk+1
k+1(t̄, t̄)),

xk+1(0) = 0,

(3.20)



dxk(t̄)
dt̄

= Fk(t̄, xk(t̄), ūk−1
k (t̄, 0), . . . , ūk−1

n (t̄, 0), ūk
1(t̄, 0), . . . , ūk

k(t̄, 0)),

xk(0) = 0,

where gk
i (i = 1, . . . , n), Fk, Fk+1 are given by (2.8)-(2.9) and (2.10)-(2.13).

Likewise for even k, we can also obtain similar boundary conditions.
Thus, we acquire a functional boundary value problem in terms of ūk (k =

1, . . . , n − 1) on the angular domain D̄(δ), which is equivalent to the original
problem. We next use the method similar to that used in [18] to extend the
systems (3.9)-(3.20).
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If ū(t̄, x̄) ∈ Cm+1, define operators

A =
∂

∂t̄
+

∂

∂x̄
, B =

∂

∂t̄
,

and set {
uk,1(t̄, x̄) = {Aūk

1 , . . . , Aūk
k, Būk

k+1, . . . , Būk
n},

vk,1(t̄, x̄) = {Būk
1 , . . . , Būk

k, Aūk
k+1, . . . , Aūk

n}
(3.21)

for odd k. Substituting (3.21) into (3.9), we obtain
k∑

r=1

ζ̄k
lr(λ

k
l uk,1

r +(1−λk
l )vk,1

r )+
n∑

s=k+1

ζ̄k
ls(λ

k
l vk,1

s +(1−λk
l )uk,1

s ) = µ̄k
l , (l = 1, . . . , n),

from which it yields

vk,1
l =

n∑

i=1

ak,1
li (t̄, xk(t̄, x̄), ū(t̄, x̄))uk,1

i + bk,1
l (t̄, xk(t̄, x̄), ū(t̄, x̄)), (l = 1, . . . , n).

By (3.5), (3.14), (3.15) we get

(3.22) ζ̄k
li(0, 0|ûk) = ζli(0, 0, ûk) = δli, (l, i = 1, . . . , n),

λk
l (0, 0|û) =

λl(0, 0, ûk)− Fk(0, 0, û)
Fk+1(0, 0, û)− Fk(0, 0, û)

, (l = 1, . . . , n),

where û = {û1, . . . , ûn}. Noting (2.4), we have{
Fk(0, 0, û) = σ̂k,

Fk+1(0, 0, û) = σ̂k+1.

By (2.14) we easily calculate

ak,1
li (0, 0, ū(0, 0)) = τk

l δli, (l, i = 1, . . . , n),

bk,1
l (0, 0, ū(0, 0)) = γk,1

l , (l = 1, . . . , n),
where 




γk,1
r =

(
Fk+1 − Fk

Fk+1 − λr
µr

)
(0, 0, û), (r = 1, . . . , k),

γk,1
s =

(
Fk+1 − Fk

λs − Fk
µs

)
(0, 0, û), (s = k + 1, . . . , n).

Consequently, at the origin we have

vk,1
l = τk

l uk,1
l + γk,1

l , (l = 1, . . . , n).

Differentiating the system (3.9) with respect to t̄ and combining (3.14)-(3.16)
yields

n∑

i=1

ζk,1
li (t̄, xk(t̄, x̄), u(t̄, x̄))

(
∂uk,1

i

∂t̄
+ λk

l

∂uk,1
i

∂x̄

)

= µk,1
l (t̄, xk(t̄, x̄), u(t̄, x̄), uk,1(t̄, x̄)) (l = 1, . . . , n).
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When ζ, λ, µ in the system (3.6) are Cm+1 functions, obviously ζk,1, µk,1 are
Cm functions, where





ζk,1
rp = ζk

rp +
n∑

q=k+1

ζk
rqa

k,1
qp , ζk,1

rs =
n∑

q=k+1

ζk
rqa

k,1
qs ,

ζk,1
sr =

k∑
p=1

ζk
spa

k,1
pr , ζk,1

sq =
k∑

p=1

ζk
spa

k,1
pq + ζk

sq, (r, p=1, . . . , k; s, q=k + 1, . . . , n).

By (3.22) it follows

ζk,1
li (0, 0, û) = δli, (l, i = 1, . . . , n).

Repeating the process above m times, we obtain a system in terms of
uk,j(j = 0, . . . , m), where uk,0 = ūk. On D̄(δ), uk,j satisfy

n∑

i=1

ζk,j
li (t̄, xk(t̄, x̄), u(t̄, x̄))

(
∂uk,j

i

∂t̄
+ λk

l

∂uk,j
i

∂x̄

)(3.23)

= µk,j
l (t̄, xk(t̄, x̄), up,q(t̄, x̄)), (p = 1, . . . , n− 1; q = 0, . . . , j), (l = 1, . . . , n),

where ζk,j , µk,j (j = 0, . . . , m) are at least C1 functions, and satisfy

(3.24) ζk,j
li (0, 0, û) = δli, (l, i = 1, . . . , n).

Likewise, for even k, in (3.21) replacing uk,j by vk,j , we can derive similar
systems, and (3.24) remains valid.

Next, we shall consider the boundary conditions. As k = 1, . . . , n and k is
even, OAk : {(t, x) | 0 ≤ t ≤ δ, x = xk(t)} is transformed into {(t̄, x̄) | 0 ≤ t̄ ≤
δ, x̄ = t̄}, on which we have the boundary condition (3.20) and

ūk−1
r = Gk−1

r (t̄ |ūk−1
r , . . . , ūk−1

n , ūk
1 , . . . , ūk

k)(3.25)

= gk−1
r (t̄, xk(t̄), ūk−1

k (t̄, t̄), . . . , ūk−1
n (t̄, t̄), ūk

1(t̄, t̄), . . . , ūk
k(t̄, t̄)),

(r = 1, . . . , k − 1),

ūk
s = Gk

s(t̄|ūk−1
k , . . . , ūk−1

n , ūk
k, . . . , ūk

k)(3.26)

= gk
s (t̄, xk(t̄), ūk−1

k (t̄, t̄), . . . , ūk−1
n (t̄, t̄), ūk

1(t̄, t̄), . . . , ūk
k(t̄, t̄)),

(r = k + 1, . . . , n).
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Differentiating both sides of (3.25) with respect to t̄ yields

uk−1,1
r =

n∑

q=k

∂gk−1
r

∂ūk−1
q

vk−1,1
q +

k∑
p=1

∂gk−1
r

∂ūk
p

vk,1
p +

∂gk−1
r

∂t
+

∂gk−1
r

∂x
Fk

=
n∑

q=k

∂gk−1
r

∂ūk−1
q

(
n∑

i=1

ak−1,1
qi uk−1,1

i + bk−1,1
q

)

+
k∑

p=1

∂gk−1
r

∂ūk
p

(
n∑

i=1

ak,1
pi uk,1

i + bk,1
p

)
+

∂gk−1
r

∂t
+

∂gk−1
r

∂x
Fk,

(r = 1, . . . , k − 1).

Repeating m times we get that for j = 1, . . . ,m

uk−1,j
r =

n∑

q=k

∂gk−1
r

∂ūk−1
q




n∑

ij=1




n∑

i1,...,ij−1=1

ak−1,1
qi1

, ak−1,2
i1i2

, . . . , ak−1,j
ij−1ij


uk−1,j

ij




(3.27)

+
k∑

p=1

∂gk−1
r

∂ūk
p




n∑

ij=1




n∑

i1,...,ij−1=1

ak,1
pi1

, ak,2
i1i2

, . . . , ak,j
ij−1ij


uk,j

ij


+F k−1,j

r

∆=
n∑

q=k

∂gk−1
r

∂ūk−1
q

(
n∑

i=1

āk−1,j
qi uk−1,j

i

)
+

k∑
p=1

∂gk−1
r

∂ūk
p

(
n∑

i=1

āk,j
pi uk,j

i

)

+ F k−1,j
r , (r = 1, . . . , k − 1),

here ak−1,j and ak,j are functions of (t, x, ū), F k−1,j
r are functions of (t, x, up,q)

(p = 1, . . . , n− 1; q = 0, . . . , j − 1), which are at least C1, and

(3.28) ak−1,j
li (0, 0, û) = τk−1

l δli, (l, i = 1, . . . , n; j = 1, . . . ,m).

Therefore we obtain

(3.29) āk−1,j
li (0, 0, û) = (τk−1

l )jδli, (l, i = 1, . . . , n; j = 1, . . . , m),

and ak,j also have expressions similar to (3.28). Likewise, for (3.26) and odd
k, similar results can be obtained, and (3.28), (3.29) hold.

Lemma 3.1. In the absence of the centered wave, by equations (3.9)-(3.20)
the derivatives of the solution ū(t̄, x̄) of orders ≤ m − 1 at the origin can be
determined uniquely if and only if

det |I −Θj | 6= 0 (j = 1, . . . , m− 1),

where matrices Θj are defined by (2.15), (2.16).
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Proof. Letting (t̄, x̄) = (0, 0) in (3.27) and noting (3.29), it follows

uk−1,j
r =

n∑

q=k

∂gk−1
r

∂ūk−1
q

(τk−1
q )juk−1,j

q (0, 0)

+
k∑

p=1

∂gk−1
r

∂ūk
p

(τk
p )juk,j

p (0, 0) + F k−1,j
r (0, 0).

In view of (2.11) and (2.13) we get an n(n − 1)(m − 1) system in terms of
uk,j

i (0, 0) (k = 1, . . . , n− 1; j = 1, . . . , m− 1; i = 1, . . . , n), whose Jacobi matrix
is of the following form



I −Θ1

I −Θ2 0
. . .

∗ I −Θm−1


 .

Hence
m−1∏

j=1

det |I −Θj | 6= 0

if and only if the system has a unique solution, the proof of Lemma 3.1 is
complete. ¤

By Lemma 3.1, we can give the following boundary conditions for the deriva-
tives of ū of orders < m. As k = 1, . . . , n− 1,

(3.30)





uk,j
r =uk,j

r (0, 0) +

t̄∫

0

uk,j+1
r (t̄, t̄)dt̄ on x̄ = t̄,

(r = 1, . . . , k; j = 0, . . . , m− 1)

uk,j
s =uk,j

s (0, 0) +

t̄∫

0

uk,j+1
s (t̄, 0)dt̄ on x̄ = 0,

(s = k + 1, . . . , n; j = 0, . . . , m− 1)

for odd k, and

(3.31)





uk,j
r = uk,j

r (0, 0) +

t̄∫

0

uk,j+1
r (t̄, 0)dt̄ on x̄ = 0,

(r = 1, . . . , k; j = 0, . . . , m− 1)

uk,j
s =uk,j

s (0, 0) +

t̄∫

0

uk,j+1
s (t̄, t̄)dt̄ on x̄ = t̄,

(s = k + 1, . . . , n; j = 0, . . . , m− 1)
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for even k. For the m-th order derivatives of ū, letting j = m in (3.27), it
follows
(3.32)

u1,m
1 =

n∑
q=2

∂g1
1

∂ū1
q

( n∑

i=1

ā1,m
qi u1,m

i

)
+

2∑
p=1

∂g1
1

∂ū2
p

( n∑

i=1

ā2,m
pi u2,m

i

)
+ F 1,m

1 on x̄ = t̄,

(3.33) u1,m
s =

∂g1
s

∂ū1
1

( n∑

i=1

ā1,m
1i u1,m

i

)
+ F 1,m

s on x̄ = 0, (s = 2, . . . , n).

As k = 2, . . . , n− 2, we have

uk,m
r =

n∑

q=k+1

∂gk
r

∂ūk
q

( n∑

i=1

āk,m
qi uk,m

i

)
+

k+1∑
p=1

∂gk
r

∂ūk+1
p

( n∑

i=1

āk+1,m
pi uk+1,m

i

)
+ F k,m

r

(3.34)

on x̄ = t̄, (r = 1, . . . , k),

uk,m
s =

k∑
p=1

∂gk
s

∂ūk
p

( n∑

i=1

āk,m
pi uk,m

i

)
+

n∑

q=k

∂gk
s

∂ūk−1
q

( n∑

i=1

āk−1,m
qi uk−1,m

i

)
+ F k,m

s

(3.35)

on x̄ = 0, (s = k + 1, . . . , n)

for odd k.
For even k, we only need to take values of (3.34) on x̄ = 0, and to take values
of (3.35) on x̄ = t̄. As n is even, we have

un−1,m
r =

∂gn−1
r

∂ūn−1
n

( n∑

i=1

ān−1,m
ni un−1,m

i

)
+ Fn−1,m

r

on x̄ = t̄, (r = 1, . . . , n− 1),(3.36)

un−1,m
n =

n−1∑
p=1

∂gn−1
n

∂ūn−1
p

( n∑

i=1

ān−1,m
pi un−1,m

i

)

+
n∑

q=n−1

∂gn−1
n

∂ūn−2
q

( n∑

i=1

ān−2,m
qi un−2,m

i

)

+Fn−1,m
n on x̄ = 0.(3.37)

Likewise, for odd n, we can obtain the result for odd n by taking values of
(3.36) on x̄ = 0, and taking values of (3.37) on x̄ = t̄.

Thus, we obtain an n(n − 1)(m + 1) system (3.23) of the functional form
on D̄(δ) in terms of uk,j

i (k = 1, . . . , n − 1; i = 1, . . . , n; j = 0, . . . ,m) and
boundary conditions (3.30)-(3.37) and (3.20). Using Theorem 6.1 of Chapter
2 in [18] yields the following lemma.
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Lemma 3.2. The generalized Riemann problem (3.1), (3.2) admits a unique
piecewise Cm+1 solution if and only if the functional boundary value problem,
(3.23), (3.20), (3.30)-(3.37), admits a unique C1 solution on D̄(δ).

In what follows we shall prove Theorem 2.1, that is to prove if

‖Θm‖ = ‖Θ̄m‖ < 1,

then the problem (3.23), (3.20), (3.30)-(3.37) admits a unique C1 solution on
the angular domain D̄(δ). To this end, we need to use Theorem 6.1 of Chapter
2 in [18](see the Appendix)

Proof of Theorem 2.1. According to Lemma 3.2, we know that finding the
piecewise Cm+1 solution of the generalized Riemann problem (3.1), (3.2) is
equivalent to finding C1 solution of the functional boundary value problem,
(3.23), (3.20), (3.30)-(3.37) on the angular domain D̄(δ). We first check the
conditions (i)-(xi) of Theorem 6.1 in Chapter 2 [18].

Here u = uk,j
i (k = 1, . . . , n − 1; j = 0, . . . ,m; i = 1, . . . , n), α = 0, β =

0, N = n(n − 1)(m + 1); ζli, λl, µl (l, i = 1, . . . , N) are given by (3.23),
Gl(l = 1, . . . , N) are given by (3.30)-(3.37), uk,0(0, 0)(k = 1, . . . , n − 1) are
defined by the solution of the Riemann problem (3.3), (3.4), and uk,j(0, 0) (k =
1, . . . , n− 1; j = 1, . . . , m) are obtained by means of Lemma 3.1. Moreover, in
this case, from (2.15) and (2.16) it easily follows

Θm =
∂(g1

1 , . . . , g1
n, . . . , gn−1

1 , . . . , gn−1
n )

∂(ū1
1, . . . , ū

1
n, . . . , ūn−1

1 , . . . , ūn−1
n )

∣∣∣
t̄=x̄=0

· τm,

where τ is defined by (2.17). Noting (3.22) and (3.24), we have

ζ0
li = δli, (l, i = 1, . . . , N).

We first verify conditions (i)-(vii) for system (3.23).
By the expressions of ζli, λl and µl (l, i = 1, . . . , N), we know they are C1

functions, hence (i) is trivial.
For (ii), since v ∈ ∑

(δ|Ω1), obviously we have

(3.38) ‖v(t̄, x̄)− v(0, 0)‖ ≤ ε(δ,Ω1).

Applying (3.7), (3.8), (3.19), (3.20) and the mean value theorem it follows that
in AkOAk+1 (taking odd k for an example, for even k the result is similar).

xk(t̄, x̄) =
x̄

t̄
xk+1(t̄) +

(
1− x̄

t̄

)
xk(t̄)

=
x̄

t̄
(t̄Fk+1(t̃, xk+1(t̃), v(t̃, xk+1(t̃))))

+
(
1− x̄

t̄

)
(t̄Fk (̃t̃, xk (̃t̃), v(̃t̃, xk (̃t̃)))), (0 ≤ t̃,˜̃t ≤ t̄).(3.39)
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Since Fk and Fk+1 are at least C1 functions, in view of (3.38), we conclude
{ |Fk+1(t̃, xk+1(t̃), v(t̃, xk+1(t̃)))| ≤ |Fk+1(0, 0, v(0, 0))|+ ε(δ,Ω1),

|Fk (̃t̃, xk (̃t̃), v(̃t̃, xk (̃t̃)))| ≤ |Fk(0, 0, v(0, 0))|+ ε(δ,Ω1).
(3.40)

Substituting (3.40) into (3.39), one yields

(3.41) |xk(t̄, x̄)| ≤ ε(δ,Ω1).

As a result, since µ ∈ C1,

|µ(t̄, xk(t̄, x̄), v(t̄, x̄))|
≤ |µ(0, 0, v(0, 0))|+

∣∣∣t̄ ∂µ

∂t
(η1t̄, 0, v(0, 0)) + xk(t̄, x̄)

∂µ

∂x
(0, η2xk(t̄, x̄), v(0, 0))

+
N∑

i=1

(vi(t̄, x̄)− vi(0, 0))
∂µ

∂vi
(0, 0, η3v(t̄, x̄) + (1− η3)v(0, 0))

∣∣∣

≤ |µ(0, 0, v(0, 0))|+ ε(δ,Ω1),

where 0 ≤ η1, η2, η3 ≤ 1. Therefore the verification of (ii) is complete.
For (iii), because the functions in Γ[v] are continuous, and the continuous

function in a closed interval can assume the maximum, hence there exists a
constant K1 depending only on Ω1 such that∥∥∥ Γ[v]

∥∥∥ ≤ K1.

For (iv) and (v), by means of checking (ii) it follows that

ω(η|v) ≤ ω̃0(η),

(3.42) ω(η|x) ≤ ω̃0(η),

where ω̃0(η) is a function depending only on Ω1, and ω̃0(η) → 0 as η → 0. By
the expressions of ζli, λl, µl (l, i = 1, . . . , N) we know (iv) and (v) hold.

For (vi), k = 1, . . . , N , (3.19), (3.20) imply that there exist constants K2,K3

such that (in (3.43), take even k for an example, for odd k the result is similar)

|xk(t̄|v′)− xk(t̄|v′′)|(3.43)

=

∣∣∣∣∣∣

t̄∫

0

[Fk(t̄, xk(t̄|v′), v′(t̄, t̄))− Fk(t̄, xk(t̄|v′′), v′′(t̄, t̄))]dt̄

∣∣∣∣∣∣

≤ K2‖v′ − v′′‖+ K3

t̄∫

0

∣∣xk(t̄|v′)− xk(t̄|v′′)
∣∣dt̄.

By (3.43) and Gronwall’s inequality, it yields that there exists a constant K4

depending only on δ and Ω1 such that

(3.44) |xk(t̄|v′)− xk(t̄|v′′)| ≤ K4‖v′ − v′′‖.
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Hence for k = 1, . . . , n− 1, there exists a constant K5 depending only on δ and
Ω1 such that

∣∣xk(t̄, x̄|v′)− xk(t̄, x̄|v′′)
∣∣(3.45)

=
∣∣∣ x̄
t̄

t̄∫

0

(
Fk+1(t̄, xk+1(t̄|v′), v′)− Fk+1(t̄, xk+1(t̄|v′′), v′′)

)
dt̄

+
(
1− x̄

t̄

) t̄∫

0

(
Fk(t̄, xk(t̄|v′), v′)− Fk(t̄, xk(t̄|v′′), v′′)

)
dt̄

∣∣∣

≤ K5‖v′ − v′′‖
for odd k. Similarly for even k (3.45) holds. Therefore by the expressions of
ζli, λl, µl (l, i = 1, . . . , N) we can get (vi).

By the expressions (3.15) of λ we easily obtain (vii) also holds.
So far we have proved the system (3.23) satisfies the conditions (i)-(vii). In

the sequel, we shall show the boundary conditions (3.30)-(3.37) satisfy condi-
tions (viii)-(xi). Taking (3.34) for an example, others can be tackled similarly.

(viii) is still trivial.
For (ix), let

Gk,m
r (t̄) = uk,m

r (t̄, t̄|v(t̄, x̄)),

differentiating (3.61) with respect to t̄ yields

(Gk,m
r (t̄))′ =





n∑

q=k+1

∂gk
r

∂ūk
q

(
n∑

i=1

āk,m
qi

(
∂vk,m

i

∂t̄
+

∂vk,m
i

∂x̄

))

+
k+1∑
p=1

∂gk
r

∂ūk+1
p

(
n∑

i=1

āk+1,m
pi

(
∂vk+1,m

i

∂t̄
+

∂vk+1,m
i

∂x̄

))

+
m−1∑

j=0

F̃ k,m,j
r

(
∂vk,j

∂t̄
+

∂vk,j

∂x̄

)

+
m−1∑

j=0

˜̃
F

k,m,j

r

(
∂vk+1,j

∂t̄
+

∂vk+1,j

∂x̄

)

+
∂F k,m

r

∂t
+

∂F k,m
r

∂x
Fk+1

} ∣∣∣
x̄=t̄

,(3.46)

where ∂gk
r

∂ūk
q
,

∂gk
r

∂ūk+1
p

are Cm functions, āk,m
qi , āk+1,m

pi given by (3.27) are C1 func-

tions, F̃ k,m,j
r ,

˜̃
F

k,m,j

r , ∂F k,m
r

∂t ,
∂F k,m

r

∂x are continuous functions of (t̄, xk+1(t̄), vp,q)
(p = 1, . . . , n− 1; q = 0, . . . ,m− 1), and Fk+1 given by (3.19) are Cm+1 func-
tions.
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Since v(t̄, x̄) ∈ Σ(δ|Ω1), obviously it holds

‖v(t̄, x̄)− v(0, 0)‖ ≤ Ω1δ.

Noticing (3.41), we obtain




∣∣∣∂gk
r

∂ūk
q

− ∂gk
r

∂ūk
q

|t̄=x̄=0

∣∣∣ ≤ ε(δ,Ω1), (q = k + 1, . . . , n),

∣∣∣ ∂gk
r

∂ūk+1
p

− ∂gk
r

∂ūk+1
p

|t̄=x̄=0

∣∣∣ ≤ ε(δ,Ω1), (p = 1, . . . , k + 1),





∣∣∣āk,m
qi − āk,m

qi |t̄=x̄=0

∣∣∣ ≤ ε(δ,Ω1), (q = k + 1, . . . , n; i = 1, . . . , n),
∣∣∣āk+1,m

pi − āk+1,m
pi |t̄=x̄=0

∣∣∣ ≤ ε(δ,Ω1), (p = 1, . . . , k + 1; i = 1, . . . , n),





∣∣∣F̃ k,m,j
r

∣∣∣ ≤
∣∣∣F̃ k,m,j

r |t̄=x̄=0

∣∣∣ + ε(δ,Ω1),
∣∣∣ ˜̃F

k,m,j

r

∣∣∣ ≤
∣∣∣ ˜̃F

k,m,j

r |t̄=x̄=0

∣∣∣ + ε(δ,Ω1),
(j = 0, . . . ,m− 1),

∣∣∣∣
∂F k,m

r

∂t
+

∂F k,m
r

∂x
Fk+1

∣∣∣∣ ≤
∣∣∣∣
(

∂F k,m
r

∂t
+

∂F k,m
r

∂x
Fk+1

)

t̄=x̄=0

∣∣∣∣ + ε(δ,Ω1).

Thus, letting

Mr = max
j=0,...,m−1

(∣∣∣F̃ k,m,j
r |t̄=x̄=0

∣∣∣ ,

∣∣∣∣
˜̃
F

k,m,j

r

∣∣
t̄=x̄=0

∣∣∣∣
)

,

R2 =
∣∣∣∣
(

∂F k,m
r

∂t
+

∂F k,m
r

∂x
Fk+1

)
|t̄=x̄=0

∣∣∣∣ ,

and noting (3.29), we obtain

‖Gk,m
r (t̄)′‖

≤
n∑

q=k+1

n∑

i=1

(
∂gk

r

∂ūk
q

∣∣∣
t̄=x̄=0

· (τk
q )mδqi + ε(δ,Ω1)

) ∥∥∥∥∥
∂vk,m

i

∂t̄
+

∂vk,m
i

∂x̄

∥∥∥∥∥

+
k+1∑
p=1

n∑

i=1

(
∂gk

r

∂ūk+1
p

∣∣∣
t̄=x̄=0

· (τk+1
p )mδpi + ε(δ,Ω1)

) ∥∥∥∥∥
∂vk+1,m

i

∂t̄
+

∂vk+1,m
i

∂x̄

∥∥∥∥∥

+
m−1∑

j=0

(Mr + ε(δ,Ω1))
(∥∥∥∥

∂vk,j

∂t̄
+

∂vk,j

∂x̄

∥∥∥∥ +
∥∥∥∥

∂vk+1,j

∂t̄
+

∂vk+1,j

∂x̄

∥∥∥∥
)

+ R2 + ε(δ,Ω1).

As for condition (x), when v ∈ Σ(δ,Ω1), it holds

Ω(η|v) ≤ Ω1η.
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For continuous functions f, g, we have
Ω(η|f · g) ≤ ‖f‖Ω(η|g) + ‖g‖Ω(η|f),

Ω(η|f(g)) ≤ ω(Ω(η|g)|f).

Recalling (3.42), we can directly obtain (x) from (3.46).
As for condition (xi), since F k,m

r in (3.34) are C1 functions, in view of (3.44),
we can get (xi).

Since (3.30) and (3.31) are of integral form, it is easy to verify



‖Gk,j
r (t̄)′‖ ≤ ε(δ,Ω1)

∥∥∥∂v

∂t̄
+

∂v

∂x̄

∥∥∥ + R2 + ε(δ,Ω1),

ω(η|Gk,j
r (t̄)′) ≤ ε(δ,Ω1)Ω

(
η
∣∣∣
(

∂v

∂t̄
+

∂v

∂x̄

))
+ ω2(η), (j = 0, . . . , m− 1)

‖Gk,j
r (t̄|v′)−Gk,j

r (t̄|v′′)‖ ≤ ε(δ,Ω1)‖v′ − v′′‖.
Thus, we obtain the characterizing matrix of the functional boundary value
problem as follows

A =
(

0
∗ . . . . . . ∗ Θ̄m

)
.

It is easy to see
‖A‖min = ‖Θ̄m‖min,

this completes the proof of Theorem 2.1. ¤
To prove Theorem 2.2, we need the following regularity lemma.

Lemma 3.3. Assume that the functional boundary value problem (3.9)-(3.20)
admits a unique Cm+1 solution ū(t̄, x̄) on D̄(δ0), and ‖Θ̄m‖ < 1. If the coef-
ficients of (3.6) and initial conditions (3.2) are CM+m+1 functions (M ≥ 0),
and (M +m+1)-th order derivatives of µ(t, x, u) are Lipschitz continuous with
respect to u, then there exists a positive constant δ∗ ≤ δ0 independent of M ,
such that ū is a CM+m+1 solution of (3.9)-(3.20) on D̄(δ∗).

In [21], the authors showed the following regularity lemma of typical bound-
ary value problem.

Lemma 3.4. Suppose that the typical boundary value problem

(3.47)





N∑

i=1

ζli(t, x, u)
(

∂ui

∂t
+ λl(t, x, u)

∂ui

∂x

)
= µl(t, x, u), l = 1, . . . , N

x = t : ur = Gr(t, uk+1, . . . , uN ), r = 1, . . . , K

x = 0 : us = Gs(t, u1, . . . , uk), s = K + 1, . . . , N

on the angular domain D̄(δ0) admits a unique C1solution, whose corresponding
‖ ˜̄Θ1‖ < 1. If ζ, λ, µ, Gr, Gs are CM+1(M ≥ 0) functions, and (M + 1)-th
order derivatives of µ are Lipschitz continuous with respect to u, then there
exists a positive constant δ∗ ≤ δ0 independent of M , such that u is a CM+1

solution of (3.47) on D̄(δ∗).
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Proof of Lemma 3.3. If ū = ū(t̄, x̄) is a Cm+1 solution of (3.9)-(3.20) on D̄(δ0),
then by Lemma 3.2, uk,j

i (k = 1, . . . , n − 1; j = 0, . . . ,m; i = 1, . . . , n) is a
C1 solution of the functional boundary value problem (3.23), (3.20), (3.30)-
(3.37). Regarding xk(t̄) obtained (k = 1, . . . , n) as known functions, then we
easily know uk,j

i is a C1 solution of typical boundary value problem (3.47),
ζ, λ, µ, Gr, Gs are at least C2 functions, second order derivatives of µ with
respect to u are Lipschitz continuous, and ˜̄Θ1 = Θ̄m. By Lemma 3.4, there
exists a positive constant δ∗ ≤ δ0 such that uk,j

i is a C2 solution of (3.47) on
D̄(δ∗). Then it follows from (3.20) that xk(t̄)(k = 1, . . . , n) are at least C3

functions, so ζ, λ , µ, Gr, Gs are at least C3 functions. Repeated application
of Lemma 3.4 implies that uk,j

i is a Cm+1 of (3.47) on δ∗. In view of Lemma
3.2, we obtain u is a CM+m+1 solution of (3.9)-(3.20) on D̄(δ∗). The proof of
Lemma 3.3 is complete. ¤

Proof of Theorem 2.2. Since any element of Θ̄j tends to 0 as j → +∞, there
exist a positive integer m ≥ m0 and a positive constant δ0 such that the
functional boundary value problem (3.9)-(3.20) admits a unique Cm+1 solution
ū = ū(t̄, x̄) on D̄(δ0). Owing to Lemma 3.3, we obtain that ū is a C∞ solution of
(3.9)-(3.20) on D̄(δ∗). By the equivalence of the generalized Riemann problem
and the functional boundary value problem (3.9)-(3.20), one yields that u =
u(t, x) is a C∞ solution of the generalized Riemann problem in a neighborhood
of the origin. ¤

4. Appendix

Let
R(δ) = {(t, x)|0 ≤ t ≤ δ, βt ≤ x ≤ αt}, (α > β)

be an angular domain. Consider on this domain the following boundary value
problem in functional form:

n∑

j=1

ζlj(t, x, |u)
(∂uj

∂t
+ λl(t, x|u)

∂uj

∂x

)
= µl(t, x|u), (l = 1, . . . , n),(4.1)

n∑

j=1

ζ0
rj = Gr(t, u) on x = αt, (r = 1, . . . , m),(4.2)

n∑

j=1

ζ0
sj = Gs(t, u) on x = βt, (s = 1, . . . , n),(4.3)

where the coefficients ζlj , λl, µl and the boundary conditions Gl(l, j = 1, . . . , n)
are assumed to be functionals of the unknown function u = u(t, x), and

ζ0
lj , ζlj(0, 0|0) = ζlj(t, x|v)|v≡0,t=x=0.

Let
Σ(δ) =

{
v(t, x) | v ∈ C1[R(δ)], v(0, 0) = 0

}
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and
Σ(δ|Ω1) =

{
v(t, x) | v ∈ Σ(δ), ‖q‖ ≤ Ω1

}
,

where

q = {qi} : ql =
∂vl

∂t
+ β

vl

∂x
, qn+l =

∂vl

∂t
+ α

vl

∂x
, (l = 1, . . . , n),

q∗ = {q∗i } : q∗l =
n∑

j=1

ζ0
ljqj , q∗n+l =

n∑

j=1

ζ0
ljqn+j , (l = 1, . . . , n).

For v ∈ C1[R(δ)], define




ζ̃lj = ζlj(t, x|v(x, t))

λ̃l(t, x) = λl(t, x|v(t, x))

µ̃l = µl(t, x|v(t, x))

, (l, j = 1, . . . , n)

and

Γ2[v] =

{
ζ̃lj ,

∂ζ̃lj

∂t
,
∂ζ̃lj

∂x
, λ̃l,

∂λ̃l

∂x
, µ̃l,

∂µ̃l

∂x
,

1
det |ζ̃lj |

,
1

α− λ̃r(t, αt)
,

1
λ̃s(t, βt)− β

}

(l, j = 1, . . . , n; r = 1, . . . , m; s = m + 1, . . . , n).

Assume that the functional coefficients of system (4.1) satisfy the following
conditions:

(i) For any v ∈ C1[R(δ)], the values of the functions ζ̃lj(t, x), λ̃l(t, x), µ̃l(t, x)
(l, j = 1, . . . , n) on any domain R(δ′)(0 ≤ δ′ ≤ δ) depend only on the values of
the function v(t, x) on R(δ′), and all functions in Γ2[v] are continuous on R(δ);

(ii) On R(δ), for any v ∈ Σ(δ|Ω1),

‖µ̃‖ ≤ R1 + ε(δ,Ω1),

where R1 is independent of δ and Ω1, and for any fixed Ω1,

(4.4) ε(δ,Ω1) → 0 as δ → 0;

(iii) On R(δ), for any v ∈ Σ(δ|Ω1),

‖Γ2[v]‖ ≤ K1,

where K1 depends only on Ω1;
(iv) On R(δ), for any v ∈ Σ(δ|Ω1),

ω(η|λ̃l) + ω(η|µ̃l) ≤ ω0(η),

where ω(η|λ̃), ω(η|µ̃) are defined by

ω(η|w) = sup
i=1,...,n

(t′,x′),(t′′,x′′)∈R(δ)
|t′−t′′|≤η,|x′−x′′|≤η

∣∣∣wi(t′, x′)− wi(t′′, x′′)
∣∣∣,

w is an n dimensional vector valued function, and ω0(η) is a nonnegative func-
tion depending only on Ω1 and ω0(η) → 0 as η → 0;
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(v) On R(δ), for any v ∈ Σ(δ|Ω1),

ω(η|Γ2[v]) ≤ K2ω(η|q) + ω1(η),

where ω1(η) has the same property as ω0(η), and K2 depends only on Ω1;
(vi) On R(δ), for any v′, v′′ ∈ Σ(δ|Ω1),

‖ζlj(t, x|v′)− ζlj(t, x|v′′)‖ ≤ K3‖v′ − v′′‖,
‖λl(t, x|v′)− λl(t, x|v′′)‖ ≤ K3‖v′ − v′′‖,
‖µl(t, x|v′)− µl(t, x|v′′)‖ ≤ K3‖v′ − v′′‖,

where K3 also depends only on Ω1;
(vii) Let

λ0
l = λl(0, 0|0) = λ(t, x|v)

∣∣∣
t=0,x=0,v≡0

(l = 1, . . . , n).

Then for r = 1, . . . , m,

λ0
r < β

or for any v ∈ Σ(δ|Ω1),
λr(t, x|v)|x=βt ≤ β.

Similarly for s = m + 1, . . . , n,

λ0
s > α

or for any v ∈ Σ(δ|Ω1),
λs(t, x|v)|x=αt ≤ α.

For v ∈ C1[R(δ)], define




G̃r(t) = Gr(t|v)|x=αt, (r = 1, . . . ,m),

G̃s(t) = Gs(t|v)|x=βt, (s = m + 1, . . . , n).

We suppose that the functional boundary functions in (4.2), (4.3) satisfy the
following conditions;

(viii) For any v ∈ C1[R(δ)], G̃l(t) (l = 1, . . . , n) are C1 functions on the
interval 0 < t ≤ δ. Moreover, the values of the functions G̃l(t) on 0 ≤ t ≤
δ′ (0 ≤ δ′ ≤ δ) depend only on the values of the functions v(t, x) on R(δ′). In
particular, G̃l(0) (l = 1, . . . , n) depend only on v(0, 0);

(ix) On 0 ≤ t ≤ δ, for any v ∈ Σ(δ|Ω1),

‖G̃′l(t)‖ ≤
n∑

k=1

(
θlk + ε(δ,Ω1)

)
Max(‖q∗k‖, ‖q∗n+k‖) + R2 + ε(δ,Ω1), (l = 1, . . . , n),

where θlk and R2 are nonnegative constants independent of δ and Ω1, ε(δ,Ω1)
satisfies (4.4);

(x) On 0 ≤ t ≤ δ, for any v ∈ Σ(δ|Ω1),

ω(η|G̃′)l(t)≤
n∑

k=1

(
θlk+ε(δ,Ω1)

)
Max

(
Ω(η|q∗k), Ω(η|q∗n+k)

)
+ω2(η), (l = 1, . . . , n),
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where Ω(η|qi) denotes the modulus of the continuity of qi on R(δ)(i =1, . . . , 2n),
and ω2(η) is a nonnegative function depending only on Ω1 with ω2(η) → 0 as
η → 0;

(xi) On R(δ), for any v′, v′′ ∈ Σ(δ|Ω1),

‖Gl(t, x|v′)−Gl(t, x|v′′)‖ ≤
n∑

k=1

(
θlk + ε(δ,Ω1)

)
‖v′∗k − v′′∗k ‖, (l = 1, . . . , n),

where

v′∗k =
n∑

j=1

ζ0
kjv

′
j , v′′∗k =

n∑

j=1

ζ0
kjv

′′
j , (k = 1, . . . , n).

Under the preceding assumptions, problem (4.1)-(4.3) is called a typical bound-
ary value problem in functional form and the matrix

H = (θlk)

is called the characterizing matrix of this problem. Then the following theorem
holds.

Theorem 4.1. If the minimal characterizing number of H is less than 1, i.e.,

θmin = |H|min < 1,

then for sufficiently small δ > 0, the typical boundary value problem in func-
tional form, (4.1)-(4.3), admits a unique solution u = u(t, x) on R(δ).
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