• 제목/요약/키워드: Hyperbolic Partial Differential Equation

검색결과 25건 처리시간 0.023초

이상 유동에서의 음파 전달 특성 연구

  • 이성재;김경두;장원표;장근식
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.286-291
    • /
    • 1997
  • 이상 유동에서의 음파 전달 현상을 비평형, 비균질 이상 유동 방정식에 의하여 이론적으로 유도하였다 개발된 방법은 이상 계면에서의 압력 불연속성을 표면 장력 방정식에 의하여 해결하였으며, 이로 인하여 이상 유동 지배 방정식의 불량 설정된 초기치 문제(Ⅰ11-posed initial value problem)가 완전한 쌍곡형 편 미분 방정식군(Complete hyperbolic partial differential equation system)으로 만들어졌다. 새로이 개발된 방정식의 고유값인 음파의 속도는 실험 결과와 정확히 일치한다.

  • PDF

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

2차원 채널유동에서의 액적 변형에 대한 수치해석적 연구 (STUDY ON THE DEFORMATION OF DROPLETS IN A TWO-DIMENSIONAL CHANNEL FLOW)

  • 정성록;조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.6-9
    • /
    • 2011
  • In this study, the two-phase incompressible flow in two-dimensional channel considering the effect of surface tension is simulated using an improved level-set method. Quadratic element is used for solving the continuity and Navier-Stokes equations to avoid using an additional pressure equation, and Crank-Nicholson scheme and linear element are used for solving the advection equation of the level set function. Direct approach method using geometric information is implemented instead of the hyperbolic-type partial differential equation for the reinitializing the level set function. The benchmark test case considers various arrays of defomable droplets under different flow conditions in straight channel. The deformation and migration of the droplets are computed and the results are compared very well with the existing studies.

  • PDF

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

  • Lee, Eun-Gu;Kim, Dohan
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.185-190
    • /
    • 1989
  • In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Geverey class for any data which are holomorphic in a part of variables x"=(x$_{2}$,..,x$_{l}$ ) in the initial hyperplane x$_{1}$=0. A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties S:x"=constant if the equation P$_{m}$(x, .zeta.$_{1}$, .xi.')=0 for .zeta.$_{1}$ has only real roots when .xi.'is real and .xi."=0, where P$_{m}$ is the principal symbol of pp. Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when S is a hyperplane [3]. In this paper, we generalize this condition to the case of general linear subvariety S and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.blem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.

  • PDF

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Towards isotropic transport with co-meshes

  • Paulin, Christina;de Montigny, Eric Heulhard;Llor, Antoine
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.63-75
    • /
    • 2020
  • Transport is the central ingredient of all numerical schemes for hyperbolic partial differential equations and in particular for hydrodynamics. Transport has thus been extensively studied in many of its features and for numerous specific applications. In more than one dimension, it is most commonly plagued by a major artifact: mesh imprinting. Though mesh imprinting is generally inevitable, its anisotropy can be modulated and is thus amenable to significant reduction. In the present work we introduce a new definition of stencils by taking into account second nearest neighbors (across cell corners) and call the resulting strategy "co-mesh approach". The modified equation is used to study numerical dissipation and tune enlarged stencils in order to minimize transport anisotropy.

충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발 (Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings)

  • 김경수;박준범
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.61-71
    • /
    • 1998
  • 본 논문에서는 2차원 공간에서의 탄성 또는 탄소성응력파를 받는 구조부재의 동적 파괴거동을 다룬다. 이러한 문제에 대한 지배방정식은 운동방정식과 탄소성 구성방정식에 대한 증감식으로 구성된 쌍곡선 편미분 방정식으로 나타나고, 이를 풀기 위해 유한차분법을 기초로 한 Zwas방법이 도입된다. 또한 탄소성문제의 동적거동을 나타내기 위해 응력공간내 탄소성 loading path가 소성항복 현상을 모델링하는데 제안된다. 이러한 계산결과를 바탕으로 탄성체의 균열선단의 동적응력확대계수가 계산되어지고, 탄소성체에 대한 소성영역의 형상의 시간이력을 보여준다.

  • PDF

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF