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Boundary Control of an Axially Moving Belt System
in a Thin-Metal Production Line

Keum-Shik Hong, Chang-Won Kim, and Kyung-Tae Hong

Abstract: In this paper, an active vibration control of a translating steel strip in a zinc
galvanizing line is investigated. The control objectives in the galvanizing line are to improve
the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption.
The translating steel strip is modeled as a moving belt equation by using Hamilton’s
principle for systems with moving mass. The total mechanical energy of the strip is
considered to be a Lyapunov function candidate. A nonlinear boundary control law that
assures the exponential stability of the closed loop system is derived. The existence of a
closed-loop solution is shown by proving that the closed-loop dynamics is dissipative.

Simulation results are provided.

Keywords: Asymptotic stability, axially moving system, boundary control, hyperbolic
partial differential equation, Lyapunov method, nonlinear vibrations, zinc galvanizing line.

1. INTRODUCTION

The examples of axially moving systems are found
in various engineering areas: axially moving steel
strips in the thin-metal production line, power
transmission belts, textile fibers, aerial cable thread
lines, magnetic tapes, band saw blades, paper sheets
during processing, etc. In such systems, undesirable
vibrations caused by moving objects occur during the
process due to circumstances such as the eccentricity
of a pulley, and/or non-stationary speed of a driving
motor, and/or aerodynamic excitation from the
surrounding environment, and/or non-uniformity of
the material. Such vibrations cause costly defects on
the final products. Fig. 1 is a picture taken from
Kwang Yang Work, Korea, which shows a steel strip
moving upward in a zinc galvanizing line. The
rectangular box in the middle is an air cooler. Fig. 2 is
a schematic of the entire line and depicts the control
strategy of using a hydraulic touch-roll actuator. The
preheated steel strip is passed through a hot zinc tank
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for zinc coating and is then pulled up vertically. The
control objectives in the galvanizing line are to
improve the uniformity of the zinc deposit on the strip
surfaces and to reduce the zinc consumption.
Therefore, an active control of the vibrations, with a
minimal use of actuators and sensors, is currently the
main research focus in the area of axially moving
systems.

During the past several decades, axially moving
systems in the form of hyperbolic partial differential
equations have been extensively studied by many
researchers including, and in chronological order,
Carrier [3], Mote [17], Bapat and Srinivasan [2],
Wickert and Mote [29, 30], Morgul [16], Wickert [28],
Rebarber and Townley [23], Laousy ef al. [11], Lee
and Mote [12], Moon and Wickert [15], Oshima et al.
[19], Pellicano et al. [21, 22], Shahruz [24, 25],
Ahmed er al. [1], Fung et al. [8, 9], Oostveen and
Curtain [18], Winkin e al. [31], Li et al. [13], Ryu
and Park [33], Lee et al. [34], and Yang et al. [35].
Recently, Wickert [28] analyzed free nonlinear
vibrations of an axially moving elastic tensioned beam
over the sub- and super-critical transport speed ranges.
Rebarber and Townley [23] analyzed the spectrum of
a class of abstract partial differential equations with
boundary feedback control. Laousy er al. [11]
proposed a stabilizing boundary feedback control law
for a rotating body-beam system and demonstrated
that the beam vibrations are forced to decay
exponentially to zero. Lee and Mote [12] investigated
a boundary control technique to control the transversal
vibration of an axially moving string and proved the
exponential stability of the boundary-controlled string.
Moon and Wickert [15] analyzed nonlinear vibrations
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of a prototypical power transmission belt system, which
is excited by pulleys having a slight eccentricity,
through analytical and experimental methods. Oshima
et al. [19] showed that a self-sensing actuator driver
exhibits excellent performance in suppressing the
vibration of a cantilever. Pellicano and Zirilli [22]
analyzed the non-linear oscillations of a one-
dimensional axially moving beam with vanishing
flexural stiffness and weak non-linearities. Ahmed et
al. [1] presented a boundary layer control of a moving
belt system for studies on wing-in-ground-effect. Fung
et al. [8, 9] controlled the vibrations of an axially
moving string system using a boundary controller
derived by including the actuator dynamics in the
plant model. Oostveen and Curtain [18] studied the
problem of robust stabilization with respect to
dissipative systems with collocated sensors and
actuators. Shahruz [25] also showed that a non-linear
string could be stabilized by a linear boundary control.
Winkin et al. [31] dedicated their studies to the
dynamical analysis of distributed parameter tubular
reactors. Li et al. [13] developed a novel vibration con-
trol system that uses control inputs to regulate the
displacement of a distributed axial moving string
model

4 Hot Zinc Tank
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Fig. 1. A vertically moving steel strip in the zinc
galvanizing line.

The axially moving systems can be modeled in
three different ways: a string equation [8, 9, 12, 13,
25], a beam equation [22, 28], and a belt equation [15,
21] depending on the flexibility of the system and the
objectives of control. In this paper, a belt equation is
used because the length of the steel strip between two
supporting points (see Fig. 2) is 17.5 m long and
therefore it allows some longitudinal deformation as
well as transversal displacement. Hamilton’s principle
[14] is used to derive the motion equations of the
moving strip for systems of changing mass. A
nonlinear right-boundary control law to suppress the
vibrations of the moving strip is determined so that the
total vibration energy dissipates at the right boundary.
The asymptotic stability of the closed loop system is
guaranteed by Lyapunov second method.

The contributions of this paper are the first time
analysis of the zinc galvanizing line, and the derivation
of a control-oriented model for the translating steel
strip. Considering the flexibility of the strip, the
model is obtained in the form of coupled hyperbolic
partial differential equations that describe the transversal
and longitudinal motions, which are then simplified
by decoupling the two-time scale behavior of the dual
motions.
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Fig. 2. A translating steel strip in the zinc galvanizing
line: control strategy.
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Boundary Control Force

Fig. 3. A schematic of the axially moving steel strip
with two intermediate touch rolls.

To the author’s best knowledge, the paper is the first
attempt for boundary control of a belt equation, while
many researches have previously focused on
investigating the analytic solutions of belt equations.
The boundary control law derived is implementable
and assures the exponential stability of the closed loop
system.

The structure of this paper is as follows. In Section
2, the translating steel strip in the zinc galvanizing line
is mathematically modeled. A normalized equation for
the transversal motion is derived. In Section 3, a
nonlinear boundary control law is derived. In Section
4, the existence and exponential convergence of the
closed-loop solution are shown. In Sections 5 and 6,
numerical simulations and conclusions are given.

2. MODELING OF THE TRANSLATING
STEEL STRIP

Fig. 2 depicts a continuous hot-dip zinc galvanizing
process with an active vibration control. The steel
strip, which may vary in width from 800 mm to 1,400
mm and in thickness from 1.2 mm to 4.5 mm, is
preheated in a continuous annealing furnace and then
introduced at the speed of about 1 m/sec into a pot of
molten zinc at about 450°C. The steel strip passes
under a sink roll and through a pair of stabilizing and
correcting rolls to emerge vertically from the pot
coated with a layer of zinc. Because there is an
increasing demand for greater consistency in the
thickness of zinc film, a pair of air knives located
approximately 0.5 m above the surface of the zinc
tank, which direct a long thin wedge-shaped jet of
high-velocity air toward the strip, are used to control
the deposited mass by removing excess zinc and
dumping it back into the pot. The strip then travels
35m in a vertical direction, while the solidification of
the deposited film is enhanced with the aid of an air
cooler, and 110m in a horizontal direction, cooling as
it goes, to a gauge that measures the zinc mass
deposited on the strip surfaces.

In order to achieve uniformity of the zinc deposit
on the strip surfaces and to reduce zinc consumption,

the strip must pass at equidistance from each of the air
knives. However, due to the shifting and vibration of
the strip, a discrepancy between the averaged
deposited masses on the left and right strip surfaces
and a non-uniformity of the deposited mass across the
strip occur. These variations in deposited mass will
degrade the quality of the product. Also, the actual
measurement of the deposited mass is being
performed at a downstream gauge and therefore there
is a large measurement time-delay ranging from 1.8
min to 5 min depending on the translating speed of the
strip. Hence, by the time a defect is detected, a lengthy
strip has already been processed.

It is known that the vibration of the strip is due to
the eccentricity of the sink roll. This eccentricity is
again due to the wear of the bushing in the sink roll.
Therefore, by means of an active control, if the
transversal (lateral) vibration of the strip (at the air
knives location) can be reduced, not only the
uniformity of the deposited mass is achieved but also
the maintenance interval of the sink roll can be
extended, which means that the frequent halt of the
entire production line can be prevented.

Fig. 3 shows a schematic of the axially moving
steel strip for control system design purposes.
Depending on the thickness of the strip and the
distance between two support points, the strip can be
modeled as one out of three models: a moving beam, a
moving string, and a moving belt. In the zinc
galvanizing line, the distance between two-support
points is quite large compared to the strip thickness.
Therefore, the modeling as a beam can be excluded.
Also, if only the transversal displacement of the strip
is concerned, a string model would suffice. In this
paper, however, both the transversal and longitudinal
displacements of the strip are considered, i.e., the steel
strip is modeled as a moving belt. But, in the second
stage, assuming that the longitudinal wave speed is far
faster than the transversal speed, a decoupling of the
transversal motion from the longitudinal speed is
pursued, i.e., only the static relationship between the
two motions is incorporated in the final “control-
oriented” model, which would allow the use of a
single actuator.

Now, the left boundary at the stabilizing roll in Fig.
3 is assumed to be fixed in the sense that a transverse
motion is not allowed but an axial movement of the
strip itself is allowed. The two touch rolls located in
the middle section of the strip will play the right
boundary, where the control input force is applied. Let
7 be the time, £ be the spatial coordinate along the
longitude of motion, vy be the axial speed of the
strip, #(£,7)and W(&,7) be the longitudinal and
transversal displacements of the strip, respectively,

and L be the length of the strip. Also, let p represent
the mass per unit area of the strip, 4 be the cross
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section area, E be the elastic modulus, and Ty be the
tension applied to the strip. Then, with a control force
F.(r) at the right boundary, the following equations
of motion are derived: See Appendix A.

A A . .
p(v§u§§ +2v0u§T+un)—E(u§ +5 é) =0,
¢

12(5’0) = ﬁo (5)7 ﬁr (5’0) = 1’;10 (é)s (l)
£(0,7) = (L, 7) = 0,

2 A A A
pA(VO W§§ + 2VOW§r + Wi )_ TOW§§

I 1.
—AE{wf(ué +—2—W§j}§ :O, (2)
1"1\)(6,0) = ‘2}0 (é:)a wz’ (é:,()) = ‘2}10 (5)9 1"{’Y(Oa T) =0,

and

Fo(z) - Towg (L, 7)

— A, (L,r){a (L) + —;—wé (L, 1)} =0 3)

where (1)-(3) represent the equations of the longitudi-
nal motion, the transversal motion, and the right
transversal boundary condition, respectively. () ¢

and (). denote a()/o¢ and a(-)/ o7, respectively.

Remark 1: If only the linear terms in (1)-(2) are
retained, the equations represent the dynamics of a
traveling rod and a tensioned string, respectively.
Over a technically useful range of parameter values,
the speed of the longitudinal waves is significantly
faster than the transversal ones [17]. On the time
scales of lower transversal modes, the tension
variations propagate almost instantaneously as the
influence of longitudinal inertial is small [28].

Now, the control problem of transverse vibrations is
formulated: First, note that the dynamics of the two
variables # and W evolve in two different time
scales. From a physical point of view, the speed of the
longitudinal waves is significantly faster than the
speed of the transversal ones. Also, considering the
practicality of implementation, i.e., the use of one
actuator, a decoupling of (1) and (2) is pursued. Hence,
following the work of [22], the time derivatives of #

T

are neglected, ie., #; =#, =iz =0. Also, since
E/p >> v§ (for example, E/p= 2.5x10° and

2
Vo =2.79 for a steel strip), (1) can be approximated as

0;(12§ +%W§j =y (D),
: ,

where

A A
w(r) =ug + Ewé , (4)

which implies that the strain equation is not a function
of £ By integrating both sides of (4) with respect to
the spatial coordinate from 0 to £ and using 4(0,7) =0,

i(Er) =y [ w3006 )

is derived. Now, observing that the touch rolls at £=L
do not permit any longitudinal displacement, i.e.,
u(L,r)=0

‘/’(f)=i éﬁ/g(@,r)dﬁ > 0, forallz=0 (6)

is derived. Therefore, the 7 -term in (2) and (3) can
be approximated in terms of the transversal one as
follows:

A(E,T) = % jf) #w2(6,7)d0 - % f j #W3(6,7)d6 (1)

Finally, the substitution of (7) into (2)—(3) yields the
following “control-oriented” model for the belt equa-
tion (1)-(3):

pA(ﬁ/TT + 2V012/§7 + ngété: )— T()Wézf

AE L , .
- jo W5(8,7)d8 - Vogs =0, (8)
W(&,0) =Wy (&), W, (£,0) =W, (&), W(0,7) =0,

and

Fc(r)=(T0 +% éwg(ﬁ,r)dﬁjﬁié(L,r)‘ )

In (8), only the “weak” nonlinearity from g
dynamics has been incorporated. Note that (8) is a
non-linear integro-differential equation.

The following new dimensionless variables are
introduced.

EA F.(1) (10)
0 0 ‘

The substitution of (10) into (8)-(9) yields the
normalized equations of the transversal motion and
the right boundary condition, respectively, as follows:

2 Vagl o
Wy +2vwy, +(v —l)wxx =5vT wadx~wxx,

W(X,O) = wO (x)’ wt (x,O) = wtO (x)9 W(O, t) = 09 (1 1)
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and
£ = {1 + %V% [, wﬁdx}wx(l,t) ’ (12)

where the terms w,, 2vw,,, and w,, represent the
local, the Coriolis, and the centrifugal acceleration
components, respectively, and f.(f) is the control
input force to be designed. Note that (12) involves an
integral term, which may not be easily implementable.
However, through the boundary control law design in
the upcoming Section 3, the control force in (12),
fe(t), will be re-formulated in an implementable
form.

Remark 2: The equilibrium solutions w(x) of

(11) satisfy:
{(v2 —1)+ V7 szdx} =0

w(0)=0,and w,(1)=0.

Note that the trivial solution w(x) =0 is always a
solution.

Remark 3: In (11), a critical speed exists at v =1.
That is, the fundamental natural frequency vanishes
and divergence instability occurs [17]. Thus, in this
paper it is assumed that v belongs to a sub-critical

< 1. In simulations in Section V,

speed range, i.e.,
v=0.0119 will be used.

Remark 4: The normalized form of (4)-(6) using
(10) becomes:

1 1 ¢l
ux(x,t)+5w§(x,t)=5J‘wa(x,t) dx. (13)

3. BOUNDARY CONTROL LAW

The objective is to design a right-boundary control
law that guarantees the asymptotic stabilization of the
axially moving strip. It is assumed that the dynamics
of the strip are well represented by the non-linear
integro-differential equation (11). For proving the
stability of the closed-loop system, the Lyapunov
second method is pursued.

As a positive definite function, the total mechanical

energy V(r) ofthe strip is considered as follows:

V(t):lJ.1 {(v+vux +u,)2 +(w, +vwx)2}dx

T J.[u +;w j dx+J.(u +; 2de‘(l4)

Note that the kinetic and potential energies of both w-
dynamics and u-dynamics have been incorporated in
(14).

The time derivative of an energy function of a mov-
ing material, which involves a fixed control volume

and a control surface through which mass flows in and
out, can be computed by applying the Reynold’s
transport theorem for the systems with changing mass
[7] as follows:

d d =~ 1d ~
—VO=— jOV(x,t)dx = IOEV(x,t)dx
1| 0 ~ 0 ~
= J.O[EV(x,t)+v&—V(x,t)}dx (15)
—EJ‘]V(x t)dx+vl7(x t)r =V, +vlV,
_at o B ’ 0 Y § X

where

V(x )=~ {(V+VL¢ +u )2 +(W, +wa)2}

2 1 2 1,
z
2(){ ZWXJ (x 2Wx)9

v, = % [}V (x.0)dx , and

10
Vx:.[oa‘x

Note that V, in (15) represents the local rate of

I7(x,t)dx .

change in the fixed control volume and vV, denotes

the resultant energy flux across the boundaries. In de-
riving (15), the material derivative
df (x,t)/ dt = Of (x,t)/ Ot +v Of (x,t)/Ox has been

utilized. Now, the first term in (15) becomes

1
V, = J.o {(v+vux +u, )(vux, +u,t)

(W, + vw )(th +wa,)+v%[u +— 1 w )(16)
x (uxt + waxt)+(uxt + Wy Wyt )} dx 3

The substitution of (11) into (16), with w(#) =u,

1 5
+wa and u, =u,; =0, yields:

1
Vt'(ll) = J.O {(W, YWy )(th +vth)
+ '/’VYZ"WxWxt + W Wy, bdx (17

1 2
= ‘[0 {(Wt +vw, )(WVTWxx TWix =V Wy = VWy )

+ (1//\17% + 1)Wxsz ydx '

Also, ¥, in (15) can be expressed by using (13) as
follows:

1
V.= Io {(v+vux +ur)(vuxx +ux,)

+ (w, +vw, Xsz + vwxx)}dx
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1 1 1
+V%J.O{[ux+5w§j(ux+5w§j
P
1 2
+ ux+5wx Y

= I; {vz(l 1 e + (W, +vw, wy, +vwyy )}dx

ki

(1%)

because yis independent of x. The substitution of (17)
and (18) into (15) with 1, =w(H)—w? /2 yields:

Vi(“) = j; {(WVZZ" +1>Wthx +(I//V72~ +1)‘/waxx
o + oo 9 g e

2
+1 1

2 X

0
V3 21
+—uy
2 0

2
_—_(WVTZ, +1>/V’lez) +£(//VT—+1) 'W2

M

+v3 -ux|:)

| (19)

0

L LR B
—wi| F—w| —— W
2 0o 8 0o 2

=2 + 1w, 00wy (1,6) = w, (0, )w, (0,1
2hbi vt bzan

3
—w2(0,0)}+ % {w;‘ 1,0)-w (o, r)} .

l//V32

0

Using w,(0,7) =0, (19) is further simplified.

3
; T2 _Y__ 4
V‘(] ) =W 00— Wi (0,0 +w, (L)

3 20
x {(w% + 1)w, (1,0 +Tw, (1,1)+ "? wi(l, t)} ,( )

where F:=§{|//(v% —v2)+(1—v2)}>0

vi >> %, IV|<1,and w20,

The first two terms in (20) are always negative.
Thus, the following feedback control law, which re-
lates the two terms, w, (1,¢) in (12) and w,(1,¢), will
make (20) negative semi-definite.

, because

w,(1,0) ==K, (1 + w)w,(1,7)
~ Ky (1+ i) wi(l,n).

To see this, (21) is substituted into (20). Then,
3
= Tw2(0,¢) - % w0,

2n

Vl(l 1),(21)
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k2 1] w2 - Kyl 1) Wi

3
+Fw§(l,t)+%-wi(l,t)
= Tw2(0 LA 0
=-T'wi( 7t)_?'wx( ,1) (22)

—(Kl(‘/’v% +1)2 —F) W;%(l,f) (18)
3
—(Kz (w2 +1)* —%]w; (L,1)<0
where K >T/(w? +1)2>0 K, >v* /82 +1)* >0

are assumed. The existence of such K; and K, is
apparent from the following equations:

r o vbi )i

w7 +1)° 2pvi +1)?
23
v 1 l//v2+v2 v (23)
= — 3 — 5 3 <5§K1
2 lyvr +1 (w7 +1) ’
3
Y 1
— < —<XK
i+t 8 @9
Therefore, from (23) and (24), K; and K
should satisfy
MKy <K and K, > 0.125. (25)

It is remarked that (25) is a sufficient condition for
assuring that the time derivative of V(z) along (11)
and (21) is negative.

Finally, w,(1,#) in (21) can be solved in terms of
w,(1,1) as follows:

(A +pi)w, (1,1)
_oomo | K w0
2K, 27K3  4K? (26)
Lo WD | KD wi )
2K, 27K3 4K

where the other two complex conjugate roots are
excluded. Therefore, by substituting (26) into (12), the
final control input becomes

PO kP win
¢ 2K,  \27k3  4K3
RN K} +w,2(1,t)
2K, Vo27k3  ax?2 - @D
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where the control input is a function of only w,(1,£)
and gains K; and K;.

All above developments are summarized in the
following theorem.

Theorem 1: Consider the axially moving system
(11)-(12). Then, the closed-loop system with the right
boundary control law (21) is uniformly asymptotically
stable.

Proof: The proof is apparent from the previous
developments: (14) is a Lyapunov function, whose
time-derivative is negative semi-definite. Since
system (11) is autonomous and the largest invariant
set contained in V=0 is w(x,7)=0, uniform
asymptotic stability is achieved [27]. U]

Remark 5: The desired control force using a
hydraulic touch-roll actuator in Fig. 2 can be
implemented as follows. A practical control input to
the hydraulic actuator is the voltage applied to the
servo valve. Let &(¢) be the control voltage directly
proportional to the spool position. A non-linear force
tracking control law for the hydraulic servo-system
can be designed as follows:

£(n) = é[f; )~k Lf (1) - £}

+wt(1,r>ﬁ[V—”2+—p‘] ,

p2 Vpl
and
Aprcs Ap1cy
Bl NP =Pt =P~ |20
p2 pl
g:

Apic

Apacy 2
ﬂ{ sz NPy =Pyt v \/p]_pr]"9<0’
p P

where f.(f) is the desired force in (27), fis the net

force of the hydraulic fluid on the piston, kp is a
is the fluid bulk
modulus, p; is the supply pressure, p, is the

positive force error gain, f

return pressure, { Py, A, , V,} and {P2, 4p,
sz } are the pressure, the cross-sectional area of the

piston, and the fluid volume in chambers 1 and 2,
respectively, while ¢1,¢,¢3 and ¢4 are the valve
orifice coefficients determined by the shape and size
of the valve orifices. Those orifice coefficients are
often provided by the manufacturer but a more
practical way of determining these values is through
off-line testing: see [26].

4. EXPONENTIAL STABILITY

In this section, the exponential stability of the
transversal motion of the axially moving strip with the
right boundary control law (21) and control gains (25)
is further investigated. In order to analyze this, the
state space A is introduced as follows:

A= %W,W)T‘WEH(I)J,WGLZ} (28)
k
where I? and H 0,/ are defined as

1’ ;={f:[o,1]—>R| j;f2dx<oo}, (29)

H(I)c,] = {fELz‘ f',f”,'”’f(k) ELZ,
and f(0) =0} (30)

The subscript / in H denotes that the function has a
left support. Equation (11) can be written in the state
space form as follows:

= Az, 2(0)eA, (31)

where z=(w,W)| €A the operator A:A — A is
a nonlinear operator defined as

W, + VW,

Az = V2
T 2 32
xx+7j‘0wxa’x-wxx (32)

) .. 2
where w = w; +vw,and w=w, +2vw, +v W, have
been utilized. The domain D(4) of the nonlinear

operator 4 for the system with the right boundary
control law is

D(A) = {(w, W)T‘ we Hy ,we Hyj, Ko+ pf P wi(L0)

+ K L+ yvPw, (1L,e) +w, (1,1) = 0}_ (33)

Lemma 1: The operator defined in (32) generates a
Cy -semigroup of contraction. That is, the transverse

dynamics of the axially moving system (11) with
boundary control law (21) is dissipative.

Proof: The transversal energy of the strip is
introduced as follows:

B0 =<zz>p =20} = [ v +vw. ) ax
2
L widxjnt% [iwlds 34

The substitution of (13) into (34), also using the

1 5 1 ¢l 5
fact ,[wa dx:_[o(,[owx dx)dx , yields another

expression as follows:
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2

_1 1 2 V72~ 1 1
E(t)—EIO(w, +yw,) dx+7jo(u +2w ] dx

+ Il (ux +lw§)a’x (35)
0 2 .

Note that (35) is the same form as (14) except the
lack of the first term in (14). The time derivative of
(35) becomes

E=E, +VE,
1 1
= jo {w, +vw, Yw, +vw,, )+v3 (ux + Ewi)
Uyt T W Wy )}dx (36)

+vj;{(w, +ow, Nwy, + VW )+ v%(ux +%w£}

x(ux+%w§J +(u +;w j }dx
X X

The substitution of (11) into (36), with w(f)=u,

1 9
+5wx and Uy, =u,; =0, yields:

51(1 Do

x (uxt + wxth)+(

1 2
_.;) {Wt +vw, Xw}t + wat) HWrW W W Wy, }dx

+ vj(; {(w, +vw, )(wx, + VW, )}dx

1
= I {(w, +ww )(y/v%w + Wy, —vzwxx —vth)

(va +1)Wx xt}d
+Vf0{(wt +vwy N + VW ) dx 37)
= [ 3 + oo + 3 1,
2 + 1wy, e

=(l//V72- +1)w,wx|:) +£l//—v?)v-w§ .

= (w% + 1){wt (la t)wx (17 t) - W (O’ t)wx (Os t)}
+ %(w% + 1){w§ (1,1) - w2 (0, t)}.

1

Again, the substitution of (21) into (37) yields:
2.2
B pan = K10 w2l
—K(1+pwi)*wian+ %(w% + 1)w§ 1,1
%
~2lpd b2,

% 1
S_Ea+W;)2w§a,t)_§(1+.,,v;)4w;:(1,f)

23 12 -2t sipZon

T(1+l//VT)Wx(1 f)——(1+l//VT)

l\’|<f N|<

x wi(l,t)—a(y/v% +1)w§(o,t) <0 (39

Now,
d
—<z,z>, :2<z,Az>A‘(11)’(2])
(11,2
= £ <0 (39)
(11),(21)
Hence, the closed-loop operator with (21)

dissipative on A . Therefore, a Cy semigroup S(¢)
of contraction on A 1is generated [5, 10, 20], where
S(t) is abounded operatoron A for ¢>0. UJ

Theorem 2: The axially moving system (11) under
boundary control law (21) with the control gains in
(25) is exponentially stable. That is, there exist
constants # >0 and M >0 such that

E)<Me™,t>0 (40)

Proof: To prove that the system decays
exponentially to zero, the following positive definite
function, by following the approach in [12], is
introduced.

1) = 1B+ [ x{2w, O, +vw, e, 120 (a1)

where E(f) is defined in (34). The last term of (41)
satisfies the following inequalities:

2 J.; xw, (w, +vw, )dx

1 1
< J.o (xw, )2 dx + Io (w, +vw, )2 dx (42)
< [ wldx + [ (v +vw, Vv < 2E(1) < CEQ)

where C >2 is a constant. Hence, the following
holds:
0<(t—C)E(t) <n(t) < (t + C)E(r) ’ (43)

for ¢> C sufficiently large. With the use of (11) and
(13), the differentiation of (41) with respect to time
yields:

7)1y, = EO +E@©)

+2.f

= E) + E(0) + 2 [ [oww, + 0w, {- 20w,

P We + XW W, + 2vxw, wy, )dx

(l—v +y/vT)w }+2vxw Wy, px
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=E()+ tE(t) +2 J: [xwx,w, + x(l —v2 4 1//v% )waxx ]dx
= E(t) +tE(t) + 2 JZ XW,, W, dx

+ 2(] -y l//V% )J; XW, Wy dX . (44)

Also, the last two terms of (44) satisfy the
following equalities.

Z'f;xwx,w,dx: J;g)—c—(xw,z )dx— J; w,zdx

1 1 1 45
:xw,zyo—jowf‘dx:wtz(l,t)—-‘[owtzdx, (43)

2 j; XW W, dx = J;%(xwi )d - Jz w%dx
(46)

1 1 1
=xw§ 0 Iowidx=w£(l,t)— Iowﬁdx

Finally, (44) is expressed as follows:

A1) = () +1E@) + w2 (1, 1) — jol whdx+(1-2

1 47
v L) - (= v ) [ wide

The substitution of (21) into (47) yields:

7O 1y oy = EO+ KT A+ yv7 Y2 wi(L,r)

+ 2K, Ky L+ ywd) wi(,0) + K3 (1+ yw3)° "

x wO(1,0) + (1= v? +yvd w2 (1,0) + tE(?)

1 2 2 2 f1 2

- Iow, dx-(1-v +t//vT)J.0wxdx’
where E(1)<0. Thus, noting that E(¢) and w,(1,7)
are bounded, (48) is negative for a sufficiently large

time ¢ . That is, when (>, (48) satisfies the
following inequality.

<0 (49)
From (43) and (49), the following holds:
E(@) < 7’7& t>Q (50)

Thus, from (34), (50) and the semi-group property
of the solution, the following inequality is obtained.

jo‘” EX(t)dt = j;) EX(t)dr + j; EX(t)dr

(5h

o 4 © 1)’
< | ||S(t)z(0)||Adt+ N - oF di <o

where z(0) € D(4) . (51) implies that

wix.t)

Dispiacement

005 :

0 -lof

04
08

X
Length

Fig. 4. 3D plot of the controlled response with

control  gains of  K;=00714 |
K, =10 (Dimensionless).
i 4
l, sz dr<eo (52)

Then, by the semigroup theorem [20], there exist

constants 4#'>0 and M'>0 such that
ls@), <Me™  Thatis,
|z, < M=), e (53)
From (34),
B0y = e, < (7P e ) < Me (54

2

where M =”Z(0)H3\(M 'Y and =24 . Therefore,

the theorem is proved. L]

5. NUMERICAL SIMULATIONS

To illustrate the control performance of the
proposed boundary control law, numerical simulations
by using a finite difference scheme are performed. A
mesh of N =100 nodes along the length of the strip
has been used. Typical parameter values of the steel

strip are:
E=2x10"" N/m%, 4=14x0.0045 m?,
Tp = 9,800 kN, p =7.850 kg/m®,
vo =1.67 m/s,and L=17.5 m.

(35)

Therefore, the parameters in normalized equation
(11) are
v=0.0119, vy =35.857,and x€[0,1].
Fig. 4 shows the 3D plot of the controlled response
of system (11), which demonstrates the exponentially
decaying behavior of the system. The gains used are

Ki= 0.0714 and K, =10, which satisfy condition
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Without Control

With Boundary Control
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(a) Transversal displacement at x = 0.5, w(0.5,7).
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(b) Control input.

Fig. 5. Simulation results of the axially moving strip
with control gains of K; =0.0714 K, =10
(Dimensionless).

(25). The initial condition used is w(x,0) = 0.02sin 7zx
In Fig. 5, the transversal displacement at x = 0.5
and the control input used are shown. As compared in
Fig. 5, the response of the uncontrolled system
continuously  oscillates with almost identical
magnitude as the initial condition. This uncontrolled
vibration will damp out eventually, but because the
damping is so small it will last for a while. Conversely,
with the boundary control, an acceptable level of
vibration suppression was achieved within 1.5 sec.

6. CONCLUSIONS

In this paper, a boundary control law for the axially
moving steel strip in a zinc galvanizing line was
investigated. The boundary control law derived was in
the form of a negative feedback control of the
transversal velocity at the right end. The control law
was derived in such a way that the total energy of the
strip dissipates exponentially. The simulation results
also reveal that the transversal vibrations die out
exponentially. As future research issues related to the
controls in the zinc galvanizing line, the consideration
of the tension variation due to the eccentricity of the
sink roll and the disturbance rejection from the air
knives and air cooler needs to be investigated.

Y
_B
™ }‘-u w+2—2:d§
w
A B
d¢
Fig. 6. The nonlinear strain relationship for a flexible
material.

APPENDIX A. EQUATIONS OF MOTION

In Fig. 3, the velocity of a point at £is given by

B, T) = {vo + dﬁ(é’”}i + {‘M(f’ 9 } j
dr

dr

(A1)
={v0 +v ‘”A‘cf +ﬁr}i+{v0 .wg +vizr}j,

where i and j denote the unit vectors in X and Y
directions, respectively, and (); and ()T represent

8(-)/ 8¢ and 8(-)/07 , respectively. Mass enters at
£=0 and exits at &=L . Thus, the governing
equation and boundary motion equation can be
derived by applying Hamilton’s principle for systems
of changing mass [14] such that

[ (6T - 8U + W, - oW, )dr =0

al

(A2)

where 7 is the kinetic energy, U is the strain

energy, W. is the non-conservative work, and W)
is the virtual momentum transport at both boundaries.
The kinetic and strain energies are:
1 L_ .
T =5pAI0 v-vdé and
; 3 . (A.3)
U= EAJO Op - EedE+T, jo sdé

where o is the mass per unit area of the strip which
is assumed to be constant, 4 is the cross section area,

and 7 is the tension applied to the strip.

For a highly flexible material, the strain €¢ in
(A.3) has a nonlinear relationship with respect to
deflections rather than having a linear relationship,
which is normally accepted for less flexible materials.

Fig. 6 depicts the schematic of the infinitesimal
deformation of a highly flexible strip. The non-linear
strain equation is derived as follows:



International Journal of Control, Automation, and Systems Vol. 2, No. 1, March 2004 65

A'B'— AB
&= B
r 5 5 1/2
du dw
[""f*df"f] *[d:d‘ﬂ %

IR

@ (dﬁ)z [dﬁzjz dﬁ(dfvjz
+2—+| — | +|—| +—]—
dé  \ d¢& dé dé\ dé

(A.4)

Using (A.1), (A.4), and the stress-strain relationship,
(A.3) is rewritten as follows:

1 L R ~ Y2
Tz—ipAJo{(vo + Vol +u,)

+(voin + 0, ) }d;j (A.5)

1 L 1.5)°
_ ~ a2
U_ZAEjo{u§+2w§} dé
+T, _[L 1 +l”2 dé
0 o ué 2Wé: ,

where F is the elastic modulus. The variational forms
of (A.5) and (A.6) are given as follows:

éTzéijOL{z(vo + Vil +z2,Xv05ﬁ§ +512,)

+2(vg s+, Jrodive + S0, Jdg
:pA-[OL {(V02 +V0212§ +v0121)§ﬁ§
+(V0 +V012§ +122.bl;z.
+(v§w§ +VoW, )5\%5 +(v0ﬁ/§ +W, )&&r }dcf ,
1 1 . A e
5U=EAEJOL{2(% +5w§j(§u§ +w§5w5)}d§

LT, jOL(&;f s JE

(A.6)

(A.7)

(A.8)
Lif . 1. ~ [ T .o )en
:AEJ‘O{(ué: +EWEJ&/IX+W§(H§ +EW§j§"V§}d§

i T, fOL (60 + e Jie

Furthermore, the wvariational forms of the non-
conservative work and the virtual momentum trans-
port in (A.2) are provided as follows:

W, = F(r)-M(L,7)

(A.9)
Wy = pAvo i, (L, 1) +vo, (L, 7)) - 5L, )

The substitution of (A.7)-(A.9) into (A.2) yields:

[ (o1 ~ 68U + oW, - oW, Jdz

h

= flz L <[PA(— Viiige ~ 2ot i
+ AE(ﬁg +%W§]J5ﬁ

+ [pA(— Vi Weg — 20g W, — w,,) (A.10)

+AE{W§(12§ +%w§) }+TOW§§}5@ dédr
¢
+ [2[F. () - Tyig (L,7) - 4B, (L)
e owe (L, (L,

x {u £(L,7)+ % wi(L, T)HM(L, r)dr =0

Since (A.10) must be satisfied for all variation
variables &(), the term in front of 8() must be
zero. Therefore, (1)-(3) are derived.
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