ICCAS2003

October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Vibration Control of an Axially Moving String: Inclusion of
the Dynamics of Electro Hydraulic Servo System

Chang-Won Kim*, Keum-Shik Hong** and Yong-Shik Kim*

*Department of Mechanical and Intelligent Systems Engineering, Pusan National

University, San 30 Jangjeon-dong Gumjeong-gu, Busan, 609-735, Korea.

Tel.: +82-51-510-1481, Email: wonnyday@hanmail.net, immpdaf@yahoo.co.kr
**School of Mechanical Engineering, Pusan National University, San 30 Jangjeon-dong
Gumjeong-gu, Busan, 609-735, Korea. Tel.: +82-51-510-2454,

Fax: +82-51-514-0685, Email: kshong@pusan.ac.kr

Abstract: In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo
mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using
Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip
via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s
second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can
successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of

the control laws proposed is demonstrated via simulations.
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1. INTRODUCTION

Examples of axially moving systems are found in various
engineering areas: the steel strips in thin steel sheet production
lines, cables, belts, and chains in power transmission lines, the
magnetic tapes of recorders, the band saws, etc. The dynamics
of these systems can be differently modeled depending on the
length, flexibility, and control objectives of the system
considered.

In axially moving systems, the transverse vibration of the
moving thing often causes a serious problem in achieving
good quality. It is also known that these vibrations are often
caused by the eccentricity of a pulley, and/or an irregular
speed of the driving motor, and/or a non-uniform material
property, and/or environmental disturbances. Since quality
standard as well as productivity in the production line is
getting tighter, the vibration suppression with an active or
semi-active method is nowadays seriously considered.

How to model an axially moving system, i.e., as a string
equation or a belt equation or a beam equation, depends on the
structure of the plant and the control scheme considered.
Practically, it could be modeled as a string, or a belt, or a beam
depending on where the actuator is actually inserted and
whether the axial deformation is considered or not.

Diverse results on the dynamics, stability, and/or
active/passive controls for axially moving systems have
appeared in the literature (Carrier, 1945; Bapat & Srinivasan,
1967; Wickert & Mote, 1990; Wickert, 1992; Oshima €t al.,
1997; Pellican & Zirilli, 1998; Shahruz, 1998; Shahruz, 2000;
Osstveen & Curtain, 2000). Particularly, Mote (1965) modeled
the dynamics of a band saw, as an axially moving string, and
investigated its instability with respect to the moving speed
and excitation frequency of the saw. Wickert & Mote (1988)
reported a passive control strategy, by changing its damping
and stiffness, for axially moving continua. Morgul (1992)
investigated a boundary control law that suppresses the lateral
vibration of an Euler-Bernoulli beam, but in his work the
beam was not axially moving. Laousy et al. (1996)
investigated a boundary feedback stabilization method for a
rotating body-beam system. Lee & Mote (1996) demonstrated
an optimal boundary force control law that dissipates the
vibration energy of an axially moving string. Fung et al.
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(1999a, 1999b) reported boundary control laws for linear and
nonlinear strings, in which the dynamics of the actuator has
been incorporated in the control law design. An adaptive
control (Fung et al., 2002b) and an optimal control (Fung et
al., 2002a) for an axially moving string were also investigated.
For a translating linear beam, Lee & Mote (1999) investigated
the wave characteristics and derived boundary control laws in
terms of linear velocity, linear slope, and linear force. Li &
Rahn (2000) investigated an adaptive vibration control for an
axially moving linear beam by splitting the moving part into
two subsystems, i.e., a controlled part and an uncontrolled part.
Li et al. (2002) applied the control strategy in (Li & Rahn,
2000) to the linear string including experimental results. Fard
& Sagatun (2001) focused on the exponential stabilization of a
nonlinear beam, not axially moving, by a boundary control.

Contributions of this paper are the following: First, the
actuator dynamics has been incorporated in the control law
design and the final control law derived gives the specific
current input to the hydraulic actuator. Second, the derived
boundary control law requires two information: the strip slope
at the right boundary and the damping coefficient of the
actuator. Hence, once the damping coefficient is properly
estimated in an actuator design stage using the parameter
values of the system, the final control law depends only on the
slope measurement. Therefore, the use of a slope sensor
enables the implementation of the control law. Finally, the
exponential stability of the closed loop system has been
established.

2. EQUATIONS OF MOTION

Fig. 1 shows a schematic of the plant for analyzing the
dynamics and deriving a boundary control law. The strip is
assumed to travel at a constant speed. The left boundary is
fixed, i.e., the left boundary itself doesn’t have any vertical or
longitudinal movements, but allows the axial movement of the
strip. The right boundary allows the transverse displacement
under a control force.
Let t be the time, X be the spatial coordinate along the
longitude of motion, v be the axial speed of the strip,
W(X,t) be the transversal displacement of the strip at spatial

coordinate x andtime t,and L be the length of the strip.
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where d, is the damping coefficient of the actuator and
‘ ¥ Fc(t) is the control force.

Fig. 1 An axially moving strip under
the right boundary control force

Then, the absolute velocity at spatial coordinate X
becomes

V=vi +%j = Vi + (W, (X, 1) + Wiy (X, D)}

(M

where (+);=0(-)/ot and (-)y= O(-)/ox denote the
partial derivatives and v=0x/t has been used. Now, to
derive the equations of motion, the Hamilton’s principle for

systems of changing mass (Mclver, 1973) is utilized as
follows:

t
5] T(T-U +W, e +W,p )dt =0 )
t

where T is the kinetic energy, U is the strain energy,
W, . is the non-conservative work, W, is the virtual
momentum transport at the right boundary (no variation at the
left boundary). The kinetic energy is

PA

- T.[OL {\/2 + (W +wwy P }dx +%mvvt2(L,t) 3)

where p

sectional area, m 1is the mass of the actuator. The potential
energy is

is the mass per unit length, A is the cross

L
u :I Toexdx 4)
0

where T, is a constant axial tension of the strip, ¢y is the

strain. The term in (4) is due to the strip tension. If the
infinitesimal distance dx is replaced by the infinitesimal

length ds , the strain &, can be approximated as

gxzwi /2 (Benaroya, 1998). Then (4) is rewritten as
follows:
T. L
U :—OI w2 dx (%)
2 Jo

The variations of (3) and (5) are

L
oT = pA_[O(Wt + VW, (S W, +VEW, Jdx + mwsw (L,t),  (6)

L
U =T0j Wy SW, dX . @)
0

Also, the variations of the non-conservative work and the
virtual momentum transport at the right boundary are
5\Nn.c. = FC5W( L’ t) - daWt (Ls t)éW( La t) 5

W, p, = —pAv{w (L,t) + Wy (LWL, 1) ,

®)
&)
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The substitution of (6)-(9) into (2) yields the nonlinear
equation of motion as follows:

PAW +2pAW,; — (To — pAV? )y =0 . (10)
The boundary conditions are

w(0,t) =0, wy(0,t)=0 and (11)

Mg (L) + g (Lot + Towy (L 1) = Fe (1) - (12)

Note that (10) is a partial differential equation representing the
transverse motion, while (12) is an ordinary differential
equation relating the strip motion at the right boundary and the
control force.

Mote (1965) revealed that the strip moving speed V, to
avoid a divergence of the solution, should be smaller than
some critical speed given by
To

O<v<vy = (13)
Hence, the satisfaction of (13) is also assumed in this paper. If
using the parameter values in Table 1,

Ve =11T0/p =3533 m/s. And the critical speed

means the limit speed of the string with no vibration.

To do active control of the moving string, a hydraulic touch
roll with a damper is attached at the end of the string. The
rollers in the touch roll can rotate with smooth bearings, which
allow the string to move axially without friction. But, the
contact of the string with the roll is so tight, the displacement
of the roll can be considered as the displacement of the string.
As seen in Fig. 1, the control input to the system is the current
to the electro-hydraulic servo valve. Hence, the dynamics of
the touch roll together with the dynamics of the hydraulic
servo valve have to be included in the control system design.

Regarding the touch roll as a second order mechanical
system and including only the second order dynamics from the
hydraulic system, the dynamics of the electro-hydraulic servo
system is given by

X=Xy, (14)
. 1

% :E(Apx3 —daXs ~Towy ), (15)
X3 =—a X2 —ﬂ X3+(}/1' PS —Sgn(X4)X3 )X4 N (16)
>'<4:—lx4 +£u. 17)

T T
a=4AfeVy, B=4CmBe/Vr,
7 =4Cq BeWy /My /Pt ) - (18)

where X =wW(L,t) is the piston position of the actuator,
Xy =W, (L,t)is the piston velocity of the actuator, X; =P

is the load pressure, X4 =X, is the valve position, u is the
input current to servo valve, Ps is the supply pressure, Se

is the effective bulk modulus, V; is the actuator total volume,
Cim is the coefficient of leakage, C4 1is the discharge
coefficient, Wy is the spool valve area gradient, ps is the

fluid density, A is the cross-section area of the actuator.

3. BOUNDARY CONTROL LAW
In this section, a right boundary control law that suppresses
the transverse vibration of the strip governed by (10)-(12),
(16)-(17) is derived. The following lemmas are first stated.
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Lemma 1: The total mechanical energy of the string,
L T, L
Vsring :p—Aj (w; +vwx)2dx+—°J‘ widx, (19)
2 Jo 2 Jo
and the following function are equivalent:
L
Vg = pAS j g (W -+ vy Jolx (20)
0
V' =Vaying +Va- @1
That is, there exists constant 6 >0 such that
(1 - C:1 )‘/Sring V< (1 + Cl )‘/Sring > (22)
where 0<C;<1.
Proof:
Vg = pA5I (g + v ol
L L
_ pAdLI LA (W, +vwy )P dxp + pASL LT—OJ. wZ2dx
PA 2 Jo Ty 2 Jo
PAIL
<——"——Vging - 23
min(TO, pA) Sring 3)
Where
__ PR (24)
min(Ty. pA)
The substitution of (24) into (21) yields:
_CIVSring < VB < Clvsmng . (25)
By add Vgying both side of (25) it becomes
(1_01 )‘/Sring V< (1+Cl )‘/Sring~ (26)
For Vgying and V Equivalent, 1— C, >0.By (24),
5 < min(To.pA) | @7)
PAL
Then Lemma 1 is proved. ]

Let the error of the pressure and the error of the valve
displacement are defined as

€ = X3~ X3desired » (28)

€4 = X4 ~ X4desired - 29
Now, with Lemma 1, the following Lyapunov function
candidate is proposed:

V(t) =V +Vasuator » (30)
where

m
V actuator =7{wt(L,t)ﬂ//(vm_)wx(L,t)}2

1 o> 1,

+2%+2e4, v >0. (€28)
Because the system involves a mass flow entering in and out
at the boundaries, the net change of the total energy is the sum
of the change in the control volume. The time derivative of the
Lyapunov function candidate can derive by Reynolds

translation theorem.
%V(t) =V + W, |5 (32)

Now, the total derivative (or the material derivative) of (30)
is evaluated. First the time derivative of V becomes

d
_V (t) VSrlng dt B (33)

By using (10) Vsmng (t) can be derived

d L
Evaring =Vi(aring) (V) + Wi(grting) (t)‘ 0

lT—_Az)
:(TO—PAVleth](%"“V (el [Wi]l(i

o)

2+ o v 54 B

= ToWy (L, t)w; (L, t) +VT, [wi]o ) (34)
Al’ld iVB iS
dt
d L
EVB =Vy) (1) + Wy (g (t)‘ 0

= v,oA&ﬁxth + XWg Wi + Wy W, )X
0

5 L L

+Vv pA5J. XWiy Wi X+ pAéI XWiy W OX
0 0
- 2

+0 J XWy (pAWn + 2pAVW,; + pAVT Wy }ix

0

2 Lo
+V pAcSI wi dXx . 35)
0
Lemma 2: Because W(Xt) satisfies (11), the following

equalities hold,
L L
[ “mqma==ve Lo [ “weex, (362)
0 2 2Jo

L L
I xwxwxxdx=£w§(|_,t)—lj widx, (36b)
0 2 2Jo

L
-[0 (XWxth + XWy W+ Wy W )dX = [XWth ] (If

= Lwy (L, Hw (L, 1) . (36¢)

Proof: The integration by parts yields all above equalities. m
Now, by using Lemma 2, (33) is modified as follows:

%\7(0 = ToWy (L, HHwi (L, 1) + VT, [wi]bwAvéwa(L,t)wt(L,t)
2 L

+l(pAV2&_ +T06L)N)2((L,t)+MJ. w2 dx
2 0

L
+pA2‘3Lw3(|_,t) pA&J‘ wldx— OJ' w2dx . (37)
0

On the other hand, the time derivative of (31) becomes

iVActuanr = {Wt (L) +w (v+ éL)Wx(Lst)}

dt
)My (L, 1)+ mv+ L)Wy (L, 1)} +e38; +e48y. (38)
Let the right boundary control force F.(t) is defined as

Fe(t) =~ m(v+ SLwiyg (L.1) (39)
Using (12), (39) can be written as
d

EVActuanr = {Wt (L) +w (v+ éL)Wx(Lst)}

{0 aWe (L D)~ Towy (L, 1) +e38; +€48y

= g (Lo t) + (v AWy (L D) H-dawe (L, 1)~ Towy (L, 1)}
T3 (—a Xy — B X3 + 74/ Ps —sgn(X4) X3 X4giesired )
+6 (7/\/ Ps —sgn(X4)X3 € — X3esired )
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rey (-2 U s (40)
The position of valve X4gegreg 1S defined as
X4desired Z;{a Xy + %3 |
74/ Ps —sgn(x4)X3
‘ @1

e {X3gesired — 383}
74/ Ps —sgn(x4)X3

where S; >0 . The substitution of (41) into (40) yields:
d

5 Vhcuor = (W (L) +y (v+Aywy (L D)

x{= AW (L, 1) = ToWy (L, 1)} — 5367 +74/Ps —sgn(xy ) X3 €384

(42)

X, K .
€| —— + U~ X4desired
T T

Then, from (37) and (42), the total derivative of (30) becomes

d d(~
EV(U = E(V +V actuator )
< ToWy (L, t)w (L, 1) + VT, [wi ]L + pAvoLw, (L, t)w; (L, 1)
2(pAv éL+T0d_)\N (w, t)+pA; 5_[ w2dx
0
L
_@j Wtzdx_
2 Jo
—day (V4w (L, HHwg (L, 1) = Towy (L Hwe (L, 1)

~Tow (V+ALWE (L, 1) — 5363 + 7y/Ps —sgn(x,) X €5,

. PAIL

L
%L Widx—dawtz(L,t)

2 Xq K .
wi (L,t) +e4[—7+7u—x4des-red] .

(43)

Finally, the main theorem of this paper is stated as follows:

Theorem: Consider the system (10)-(12) and (16)-(17). Let
the right boundary control force Fg(t) and the damping
coefficient of the actuator d, in (12) be given, respectively,
by

dg > pA;L : (44)
VpASL _ PASL (45)
ST wlv+al) wli+a/v)’
Then the range of d, is
PASL PASL
d, >max{H—— ————1. 46
é { 2 Cy(+6l/v) o)
And
-y <0, (47)
PAV? —T, <0, (48)
% PAVZ + T —Tow <0. (49)

Then we can choose the value of constant y and string

area Aas table 1. Also by the table 1, we can provide the
control force Fg(t). And the control input u which makes

%V (t) as negative definite can archived.

7| X 5
u= E{%ﬂ‘ Xadesired —S4€4 — 7/ Ps —sgn(X4)%3 33} (50)

The explicit value of control input is

345

1

X4desired = —F————
74/ Ps —sgn(X4 )3

1

—— (X3desired ~ $363) >
74/ Ps —sgn(X4 )3

where s4>0.

{ow (L) + %3}

+

(1)

4, STABILITY ANALYSIS
In this section, the exponential stability of string system
which applied the control input (39) and the damping
coefficient (46) is proved. The time derivative of Lyapunov
function is expressed as,

iV(t)s X+Y. (52)
dt
Here
X - _pAVAL  pAdL Wt )
w(v+a) 2
oL 1
—T(To oA 2L - i€ el (53)
L L
__PAS wtzdx—ﬂj‘ w2dx . (54)
2 Jo 2 Jo
At first, X is
_ _pAVAL pA5L (L )
w(v+aL) 2
oL

1
—T(To - pAV? )N>2<(|-7t) - 563 —;ef

- m1n(C2,C3,C4,CS{2 W (L D+ (vl wy (L, D)2 }

—mln(Cz,C3,C4,C5)( e3 + ; eﬁj
= —mm(C2 ,C3,C4,Cs )VActuator ’ ©3)
where,
C, = | pAvL__pAd | (56)
m{y (v+éL) 2
oL
2y mv+aL)
C4 — 253 CS :% (560, d)
Y is

L L
Y =—@J‘ Wfdx—ﬁj‘ wZdx
2 Jo 2D

L L

=-min(Cq,C7,Cq )VString > (57
where,
Cézﬂa C7:&9 Cszé' (58a7bic)
2 av? 2
By using (18), (50) expressed as
min(C¢,C-,C
Y < _ mmin(Ce.7.C) (VSring +VB)' (9)

1+C

Then from (55) and (59), time derivative of Lyapunov
function (52) can express as

d
—V(t)<X+Y
iU
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<-min(C;,Cs,C4, Cs )V actuator
) )
=-AV(t). (60)
Cs C, Cg
1+C, '1+C, '1+C,
the dynamics of the closed loop system is exponentially stable.
Hence, it is seen that the total mechanical energy (19) of the

strip decays exponentially, which again implies that all state
variables decay exponentially in time.

Here, A = min[Cz , C3,C4,Cs, ] . Then,

5. IMPLEMENTATION OF THE CONTROL LAW

The implementation of (39), (46) requires two things: the
design of control force F.(t) and the satisfaction of a
damping coefficient d,. Since the satisfaction of a damping

coefficient is related to the design of an actuator, it must be
answered ahead. Note that J should satisfy (27). Because all
terms in the right hand side and left hand side of (27) are
already known, the range of the damping coefficient can be
achieved. Once d, is determined, & is chosen as explained

above. The implementation of Wy (L,t) in (39) can be
achieved by backwards differencing of w,(L,t) measured at
each step.

6. SSIMULATIONS
To demonstrate the performance of the closed loop system,
computer simulations using the finite difference scheme have
been performed. The values used in simulations are tabulated
in Table 1.

By (27) 6 is calculated as follows:

9800000 ’L ~0.05 1)
7850x1.4x0.0045 20
Let 6=0.04, see (Rao, 1990). Then, from (46), d, is
calculated. So let

o< min{

w =100, d, =3000. (62)
Let the initial conditions be
W(x,0)=sin(37) mand W (x,0)=0 m/s. (63)

Now, simulations using (61)-(63) have been performed for 5
seconds. Fig. 2 shows the transverse displacement at
Xx=L/2, L. And Fig. 3 shows the control force and desired
force at X=L, respectively. As shown in Fig. 3, the lateral
vibration has been suppressed within 3 seconds. Fig. 4 shows
the decay of the total mechanical energy of the strip in time. It
shows that the total energy with control decays exponentially,
while the energy without control sustains in time.

/ Uncontralled

Displacement of W{LZ, 1)
. =}

/ 4
\\,/ \\'q/ \ / 1
Controlled

. L . L .
248 3 35 4
Time [sec]
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_* — i
gl g \ —
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S i
2t i
3 L I L L I L I L I

o 0s 1 1.5 2 25 3 35 4 45 5
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Fig. 2. The transverse displacement, w(L/2,t) ,w(L,t) with
damping coefficient d, =3000 .

1000

g Desired Force
E -1000 B
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QDDDD D.IS 1‘ 1 .IS 2| 2.‘5 EI 3.‘5 1|1 4.‘5 5
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Fig. 3. The force of the system.
107
14 T T
ol | \ / \\ i ff\1 !ﬂ\ i \\ [a
oy
e |yt [
2 VN Yy
& 8f 1
= Uncontralled
2 |
sl Controlled i
DEl 0.4 1 18 5 2.‘5 EI 3.‘5 rli 4.‘5 5
Tirne [sec]

Fig. 4. The exponential decay of the total energy.

7. CONCLUSIONS

This paper investigates a boundary control law for
suppressing the transverse vibration of an axially moving steel
strip in the zinc galvanizing line. Because the strip was
modeled as a string equation with a linear tension, the method
developed is general in the sense that it can be applied to any
system in a similar form. Once the range of damping
coefficient is established, an appropriate value for 6 can be
selected for given system parameters. Achieving the
exponential stability by using one sensor and one actuator is
the main contribution of the algorithm proposed. And it
provides the input, which can drive the actuator.
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Table 1 The plant parameters used for simulations.
symbol definition values
A cross section area 1.4x0.0045 m?
L length of the controlled part | 20 m
To tension of the strip 9,800 kN
M mass of the actuator 25 kg
v strip moving speed 1.8 m/s
P mass per unit area 7,850 kg/m’
da damping coefficient 3000 Ns/m
ACKNOWLEDGMENTS

This work was supported in part by national research
laboratory program of Korea Institute of Science and
Technology Evaluation and Planning under Grant No.
M1-0302-00-0039-03-J00-00-023-10.

(1]

[11]

REFERENCES

A. Alleyne., R. Liu., 2000, “A simplified approach to
force control for electro-hydraulic systems”, Control
Engineering Practice , 8, 1347-1356.

Bapat, V. A. and Srinivasan, P, 1967, “Nonlinear
transverse oscillations in traveling strings by the method
of harmonic balance,” Journal of Applied Mechanics, 34,
775-7717.

Benaroya, H., 1998, Mechanical vibration: analysis,
uncertainties, and control. Prentice Hall, New Jersey.

Carrier, G. F., 1945, “On the nonlinear vibration
problem of the elastic string,” Quarterly of Applied
Mathematics, 3, 157-165.

Chen, D., 1995, “Adaptive control
galvanizing,” Automatica, 31(5), 715-733.

Choi, J. Y, Hong, K. S. and Huh, C. D., 2002,
“Vibration control of an axially moving strip by a
nonlinear boundary control,” in Proceedings of the 15
IFAC 2002 World Congress, Barcelona, Spain, July
21-26, T-Tu-E19-1.

Fung, R. F, Wu, J. W. and Wu, S. L., 1999a,
“Exponential stability of an axially moving string by
linear boundary feedback,” Automatica, 35(1), 177-181.
Fung, R. F, Wu, J. W. and Wu, S. L., 1999,
“Stabilization of an axially moving string by non-linear
boundary feedback,” ASME Journal of Dynamic
Systems, Measurement, and Control, 121(1), 117-120.

of hot-dip

Fung, R. F., Wu, J. W. and Lu, P. Y., 2002b,
“Adaptive Boundary Control of an Axially Moving
String System,” Journal of Vibration and Acoustics,
124(3), 435-440.

Lee, S. Y. and Mote, C. D., 1996, “Vibration control of
an axially moving string by boundary control,” ASME

Journal of Dynamic Systems, Measurement, and
Control, 118(1), 66-74.

Lee, S. Y. and Mote, C. D., 1999, “Wave characteristics
and vibration control of translating beams by optimal

347

[16]

[17]

[19]

[20]

(21]

(22]

(23]

(24]

(23]

boundary damping,” Journal of Vibration and Acoustics,
121(1), 18-25.

Li, Y., Aron, D. and Rahn, C. D., 2002, “Adaptive
vibration isolation for axially moving strings: theory and
experiment,” Automatica, 38(3), 379-389.

Matsuno, F., Ohno, T. and Orlov, Y., 2002, “Proportional
Derivative and Strain (PDS) Boundary Feedback
Control of a Flexible Space Structure with a
Closed-Loop Chain Mechanism,” Automatica, 38(7),
1201-1211.

Mclver, D. B., 1973, “Hamiltion’s principle for systems
of changing mass,” Journal of Engineering Mathematics,
7(3), 249-261.

Morgul, O., 1992, “Dynamics boundary control of an
Euler-Bernoulli beam,” IEEE Transactions on
Automatic Control, 37(5), 639-642.

Mote, C. D., 1965, “A study of band saw vibration,”
Journal of the Franklin Institute, 279, 430-444.

Oostveen, J. C. and Curtain, R. F., 2000, “Robustly
stabilization controllers for dissipative infinite-
dimensional systems with collocated actuators and
sensor,” Automatica, 36(3), 337-348.

Pellicano, F. and Zirilli, F., 1998, “Boundary layers and
non-linear vibrations in an axially moving beam,”
International Journal of Non-Linear Mechanics, 33(4),
691-694.

Qu, Z., 2002, “An iterative learning algorithm for
boundary control of a stretched moving string,”
Automatica, 38(5), 821-827.

Rao, S. S., 1990, Mechanical Vibrations, Addison
Wesley.

Shahruz, S. M., 1998, “Boundary control of the axially
moving  Kirchhoff string,” Automatica, 34(10),
1273-1277.

Shahruz, S. M., 2000, “Boundary control of a non-linear
axially moving string,” International Journal of Robust
Nonlinear Control, 10(1), 17-25.

Wickert, J. A. and Mote, C. D., 1988, “On the energetics
of axially moving continua,” Journal of Acoustic
Society of America, 85(3), 1365-1368.

Wickert, J. A. and Mote, C. D., 1990, “Classical
vibration analysis of axially moving continua,” Journal
of Applied Mechanics, 57(3), 738-744.

Wickert, J. A., 1992, “Non-linear vibration of a
traveling tensioned beam,” International Journal of
Non-Linear Mechanics, 27(3), 503-517.

Yang, K. J. and Hong, K. S., 2002, “Robust boundary
control of an axially moving steel strip,” in Proceedings
of the 15" IFAC 2002 World Congress, Barcelona,
Spain, July 21-26, T-Tu-E19-2.



	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 342
	page21: 343
	page31: 344
	page41: 345
	page51: 346
	page61: 347


