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1. INTRODUCTION 

 Examples of axially moving systems are found in various 
engineering areas: the steel strips in thin steel sheet production 
lines, cables, belts, and chains in power transmission lines, the 
magnetic tapes of recorders, the band saws, etc. The dynamics 
of these systems can be differently modeled depending on the 
length, flexibility, and control objectives of the system 
considered. 
 In axially moving systems, the transverse vibration of the 
moving thing often causes a serious problem in achieving 
good quality. It is also known that these vibrations are often 
caused by the eccentricity of a pulley, and/or an irregular 
speed of the driving motor, and/or a non-uniform material 
property, and/or environmental disturbances. Since quality 
standard as well as productivity in the production line is 
getting tighter, the vibration suppression with an active or 
semi-active method is nowadays seriously considered. 
 How to model an axially moving system, i.e., as a string 
equation or a belt equation or a beam equation, depends on the 
structure of the plant and the control scheme considered. 
Practically, it could be modeled as a string, or a belt, or a beam 
depending on where the actuator is actually inserted and 
whether the axial deformation is considered or not.  
 Diverse results on the dynamics, stability, and/or 
active/passive controls for axially moving systems have 
appeared in the literature (Carrier, 1945; Bapat & Srinivasan, 
1967; Wickert & Mote, 1990; Wickert, 1992; Oshima et al., 
1997; Pellican & Zirilli, 1998; Shahruz, 1998; Shahruz, 2000; 
Osstveen & Curtain, 2000). Particularly, Mote (1965) modeled 
the dynamics of a band saw, as an axially moving string, and 
investigated its instability with respect to the moving speed 
and excitation frequency of the saw. Wickert & Mote (1988) 
reported a passive control strategy, by changing its damping 
and stiffness, for axially moving continua. Morgul (1992) 
investigated a boundary control law that suppresses the lateral 
vibration of an Euler-Bernoulli beam, but in his work the 
beam was not axially moving. Laousy et al. (1996) 
investigated a boundary feedback stabilization method for a 
rotating body-beam system. Lee & Mote (1996) demonstrated 
an optimal boundary force control law that dissipates the 
vibration energy of an axially moving string. Fung et al. 

(1999a, 1999b) reported boundary control laws for linear and  
nonlinear strings, in which the dynamics of the actuator has 
been incorporated in the control law design. An adaptive 
control (Fung et al., 2002b) and an optimal control (Fung et 
al., 2002a) for an axially moving string were also investigated. 
For a translating linear beam, Lee & Mote (1999) investigated 
the wave characteristics and derived boundary control laws in 
terms of linear velocity, linear slope, and linear force. Li & 
Rahn (2000) investigated an adaptive vibration control for an 
axially moving linear beam by splitting the moving part into 
two subsystems, i.e., a controlled part and an uncontrolled part. 
Li et al. (2002) applied the control strategy in (Li & Rahn, 
2000) to the linear string including experimental results. Fard 
& Sagatun (2001) focused on the exponential stabilization of a 
nonlinear beam, not axially moving, by a boundary control. 
 Contributions of this paper are the following: First, the 
actuator dynamics has been incorporated in the control law 
design and the final control law derived gives the specific 
current input to the hydraulic actuator. Second, the derived 
boundary control law requires two information: the strip slope 
at the right boundary and the damping coefficient of the 
actuator. Hence, once the damping coefficient is properly 
estimated in an actuator design stage using the parameter 
values of the system, the final control law depends only on the 
slope measurement. Therefore, the use of a slope sensor 
enables the implementation of the control law. Finally, the 
exponential stability of the closed loop system has been 
established. 
  

2. EQUATIONS OF MOTION 
 Fig. 1 shows a schematic of the plant for analyzing the 
dynamics and deriving a boundary control law. The strip is 
assumed to travel at a constant speed. The left boundary is 
fixed, i.e., the left boundary itself doesn’t have any vertical or 
longitudinal movements, but allows the axial movement of the 
strip. The right boundary allows the transverse displacement 
under a control force. 
Let t  be the time, x  be the spatial coordinate along the 
longitude of motion, v  be the axial speed of the strip, 

),( txw  be the transversal displacement of the strip at spatial 
coordinate x  and time t , and L  be the length of the strip. 
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Fig. 1 An axially moving strip under 

the right boundary control force 
 

Then, the absolute velocity at spatial coordinate x  
becomes 

 { }jtxvwtxwvij
dt

txdwviv xt ),(),(),(
++=+=

r
 (1) 

where tt ∂⋅∂=⋅ )  ()  (  and =⋅ x)  (  x∂⋅∂ )  (  denote the 
partial derivatives and txv ∂∂=  has been used. Now, to 
derive the equations of motion, the Hamilton’s principle for 
systems of changing mass (McIver, 1973) is utilized as 
follows: 

 ( ) 0
2

1
.... =++−∫

t

t
brcn dtWWUTδ  (2) 

where T  is the kinetic energy, U  is the strain energy, 
..cnW  is the non-conservative work, ..brW  is the virtual 

momentum transport at the right boundary (no variation at the 
left boundary). The kinetic energy is  
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2
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where ρ  is the mass per unit length, A  is the cross 
sectional area, m  is the mass of the actuator. The potential 
energy is 

 dxTU
L

x∫= 0
0ε                      (4) 

where 0T  is a constant axial tension of the strip, xε  is the 
strain. The term in (4) is due to the strip tension. If the 
infinitesimal distance dx  is replaced by the infinitesimal 
length ds , the strain xε  can be approximated as 

22
xx w≅ε  (Benaroya, 1998). Then (4) is rewritten as 

follows: 
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The variations of (3) and (5) are 
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Also, the variations of the non-conservative work and the 
virtual momentum transport at the right boundary are 
 ),(),(),(.. tLwtLwdtLwFW taccn δδδ −= , (8) 
 { } ),(),(),(.. tLwtLvwtLwAvW xtbr δρδ +−= , (9) 

where ad  is the damping coefficient of the actuator and 
)(tFc  is the control force.  

 The substitution of (6)-(9) into (2) yields the nonlinear 
equation of motion as follows: 
 0)(2 2

0 =−−+ xxxttt wAvTAvwAw ρρρ . (10) 
The boundary conditions are 
 0),0( =tw , 0),0( =twx  and (11) 
 )(),(),(),( 0 tFtLwTtLwdtLmw cxtatt =++ . (12) 
Note that (10) is a partial differential equation representing the 
transverse motion, while (12) is an ordinary differential 
equation relating the strip motion at the right boundary and the 
control force. 
 Mote (1965) revealed that the strip moving speed v , to 
avoid a divergence of the solution, should be smaller than 
some critical speed given by 

   
ρ
00 Tvv cr =<< . (13) 

Hence, the satisfaction of (13) is also assumed in this paper. If 
using the parameter values in Table 1, 

ρ/0Tvcr = 33.35=  sm / . And the critical speed 

means the limit speed of the string with no vibration. 
 To do active control of the moving string, a hydraulic touch 
roll with a damper is attached at the end of the string. The 
rollers in the touch roll can rotate with smooth bearings, which 
allow the string to move axially without friction. But, the 
contact of the string with the roll is so tight, the displacement 
of the roll can be considered as the displacement of the string. 
As seen in Fig. 1, the control input to the system is the current 
to the electro-hydraulic servo valve. Hence, the dynamics of 
the touch roll together with the dynamics of the hydraulic 
servo valve have to be included in the control system design. 
 Regarding the touch roll as a second order mechanical 
system and including only the second order dynamics from the 
hydraulic system, the dynamics of the electro-hydraulic servo 
system is given by 
 21 xx =& ,   (14) 

 ( )xap wTxdxA
m

x 0232
1

−−=& , (15) 

 434323 ))sgn(( xxxPxxx S −+−−= γβα& , (16) 

 uKxx
ττ

+−= 44
1

& . (17) 

 tea VA /4 βα = , tetm VC /4 ββ = , 

 )/(4 ftged VwC ρβγ = .  (18) 

where ),(1 tLwx =  is the piston position of the actuator, 
),(2 tLwx t= is the piston velocity of the actuator, LPx =3  

is the load pressure, vxx =4  is the valve position, u  is the 
input current to servo valve, sP  is the supply pressure, eβ  
is the effective bulk modulus, tV  is the actuator total volume, 

tmC  is the coefficient of leakage, dC  is the discharge 
coefficient, gw  is the spool valve area gradient, fρ  is the 

fluid density, pA  is the cross-section area of the actuator. 
  

 3. BOUNDARY CONTROL LAW 
  In this section, a right boundary control law that suppresses 
the transverse vibration of the strip governed by (10)-(12), 
(16)-(17) is derived. The following lemmas are first stated. 
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 Lemma 1: The total mechanical energy of the string, 
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and the following function are equivalent: 
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That is, there exists constant 0>δ  such that 
 ( ) ( ) StringString VCVVC 11 1~1 +≤≤− , (22) 

where 10 1 <<C .                     
 Proof:  

 ( )∫ +=
L

xtxB dxvwwxwAV
0

δρ  

( ) 







+









+= ∫∫
L

x
L

xt dxwT
T

LAdxvwwA
A

LA
0

20

00

2
2

1
2

1 δρρ
ρ

δρ

 ( ) StringV
AT

LA
ρ

δρ
,min 0

≤ . (23) 

Where 
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The substitution of (24) into (21) yields: 
 StringBString VCVVC 11 ≤≤− .      (25) 

By add StringV  both side of (25) it becomes 

 ( ) ( ) StringString VCVVC 11 1~1 +≤≤− .           (26) 

For StringV  and V~  Equivalent, 01 1 >−C . By (24), 
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Then Lemma 1 is proved.     ■ 
 Let the error of the pressure and the error of the valve 
displacement are defined as  
 desiredxxe 333 −= ,  (28) 
 desiredxxe 444 −= .         (29) 
Now, with Lemma 1, the following Lyapunov function 
candidate is proposed: 
 ActuatorVVtV +=

~)( , (30)  
where 

 { }2),()(),(
2

tLwLvtLwmV xtActuator δψ ++=  

  2
4

2
3 2

1
2
1 ee ++ ,  .0>ψ  (31) 

Because the system involves a mass flow entering in and out 
at the boundaries, the net change of the total energy is the sum 
of the change in the control volume. The time derivative of the 
Lyapunov function candidate can derive by Reynolds 
translation theorem.  
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 Now, the total derivative (or the material derivative) of (30) 
is evaluated. First, the time derivative of V~  becomes 
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And BV
dt
d  is 
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 Lemma 2: Because ),( txw  satisfies (11), the following 
equalities hold, 
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 Proof: The integration by parts yields all above equalities. ■   
 Now, by using Lemma 2, (33) is modified as follows:  
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On the other hand, the time derivative of (31) becomes 
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Let the right boundary control force )(tFc  is defined as 
 ),()()( tLwLvmtF xtc δψ +−= . (39) 

Using (12), (39) can be written as 
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The position of valve desiredx4  is defined as 
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where 03 >s . The substitution of (41) into (40) yields: 
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Then, from (37) and (42), the total derivative of (30) becomes 
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 Finally, the main theorem of this paper is stated as follows: 
 Theorem: Consider the system (10)-(12) and (16)-(17). Let 
the right boundary control force )(tFc and the damping 
coefficient of the actuator ad  in (12) be given, respectively, 
by 
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Then we can choose the value of constant ψ  and string 
area A as table 1. Also by the table 1, we can provide the 
control force )(tFc . And the control input u  which makes 
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The explicit value of control input is 
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where 04 >s . 
 

4. STABILITY ANALYSIS 
 In this section, the exponential stability of string system 
which applied the control input (39) and the damping 
coefficient (46) is proved. The time derivative of Lyapunov 
function is expressed as, 
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By using (18), (50) expressed as 
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Then from (55) and (59), time derivative of Lyapunov 
function (52) can express as 
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the dynamics of the closed loop system is exponentially stable. 
Hence, it is seen that the total mechanical energy (19) of the 
strip decays exponentially, which again implies that all state 
variables decay exponentially in time. 

 
5. IMPLEMENTATION OF THE CONTROL LAW 

The implementation of (39), (46) requires two things: the 
design of control force )(tFc  and the satisfaction of a 
damping coefficient ad . Since the satisfaction of a damping 
coefficient is related to the design of an actuator, it must be 
answered ahead. Note that δ  should satisfy (27). Because all 
terms in the right hand side and left hand side of (27) are 
already known, the range of the damping coefficient can be 
achieved. Once ad  is determined, δ  is chosen as explained 
above. The implementation of ),( tLwxt  in (39) can be 
achieved by backwards differencing of ),( tLwx  measured at 
each step. 
 

6. SIMULATIONS 
 To demonstrate the performance of the closed loop system, 
computer simulations using the finite difference scheme have 
been performed. The values used in simulations are tabulated 
in Table 1. 
By (27) δ  is calculated as follows: 

 05.0
20
1,

0045.04.17850
9800000min =







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××
<δ , (61) 

Let 04.0=δ , see (Rao, 1990). Then, from (46), ad  is 
calculated. So let  
 100=ψ , 3000=ad . (62) 
Let the initial conditions be 
 )3sin()0,( π=xw  m and 0)0,( =xwt  m/s. (63) 
Now, simulations using (61)-(63) have been performed for 5 
seconds. Fig. 2 shows the transverse displacement at 

2/Lx = , L . And Fig. 3 shows the control force and desired 
force at Lx = , respectively. As shown in Fig. 3, the lateral 
vibration has been suppressed within 3 seconds. Fig. 4 shows 
the decay of the total mechanical energy of the strip in time. It 
shows that the total energy with control decays exponentially, 
while the energy without control sustains in time. 

 

 

 
Fig. 2. The transverse displacement, ),2/( tLw  , ),( tLw with 
damping coefficient 3000=ad .  

 
Fig. 3. The force of the system. 

 
Fig. 4. The exponential decay of the total energy. 

 
7. CONCLUSIONS 

 This paper investigates a boundary control law for 
suppressing the transverse vibration of an axially moving steel 
strip in the zinc galvanizing line. Because the strip was 
modeled as a string equation with a linear tension, the method 
developed is general in the sense that it can be applied to any 
system in a similar form. Once the range of damping 
coefficient is established, an appropriate value for δ  can be 
selected for given system parameters. Achieving the 
exponential stability by using one sensor and one actuator is 
the main contribution of the algorithm proposed. And it 
provides the input, which can drive the actuator. 
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Table 1 The plant parameters used for simulations. 

symbol definition values 

A cross section area 0045.04.1 × m2

L length of the controlled part 20 m 

0T  tension of the strip 800,9 kN 

M mass of the actuator 25 kg 

v strip moving speed 8.1 m/s 

ρ  mass per unit area 850,7 kg/m2 

 ad  damping coefficient 3000 Ns/m 
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