• Title/Summary/Keyword: Hydrogen ambient

Search Result 165, Processing Time 0.028 seconds

Annealing effect of Si nanocrystallites thin films (실리콘 나노결정 박막의 후열처리 효과 연구)

  • Jeon, Kyung-Ah;Kim, Jong-Hoon;Choi, Jin-Baek;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.88-91
    • /
    • 2003
  • Si nanocrystallites thin films have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed at the temperature range of 400 to $800^{\circ}C$. Hydrogen passivation was then performed in the forming gas ($95%N_{2}+5%H_{2}$) at $500^{\circ}C$. Strong violet-indigo photoluminescence has been observed at room temperature on nitrogen ambient-annealed Si nanocrystallites. As a result of photoluminescence spectra and infrared absorption spectra, we conclude that the violet-indigo PL efficiency is related with oxygen vacancy in the $SiO_x$(x= 1.6-1.8) matrix.

  • PDF

Influence of Wet Annealing on the Performance of SiZnSnO Thin Film Transistors

  • Han, Sangmin;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.34-36
    • /
    • 2015
  • Amorphous SiZnSnO(SZTO) thin film transistors(TFTs) have been fabricated by RF magnetron sputtering process, and they were annealed in air and in wet ambient. The electrical performance and the structure were analyzed by I-V measurement, XPS, AFM, and XRD. The results showed improvement in device performance by wet annealing process compared to air annealing treatment, because free electron was shown to be increased due to reaction of oxygen and hydrogen generating oxygen vacancy. This is understood by the generation of free electrons. We expect the wet annealing process to be a promising candidate to contributing to high electrical performance of oxide thin film transistors for backplane device applications.

Gas Sensing Properties of $MgO-Cr_2O_3-TiO_2$ Oxide ($MgO-Cr_2O_3-TiO_2$ 산화물의 가스감지 특성)

  • 양천회;홍필선;유일증;임병오
    • Journal of the Korean Society of Safety
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1986
  • Gas sensing materials for detecting inflammable gas such as alcohol, propane, acetic acid, carbon monoxide, hydrogen were developed by utiliting $MgO-Cr_2O_3-TiO_2$ system. Between 30$0^{\circ}C$ and 50$0^{\circ}C$, reversible chemisorption becomes dominant and the electrical canduction of P-type semiconductive with the gas chemisorption. The ceramic sensor exhibits a high sensitivity to particular reducing gas such as alcohol, whereas propane and butane have little effect on the resistivity. The time response of adsorption is estimated to be about 20 sec. On the other hand, the desorption process, which corresponds to oxidation due to oxygen adsorption, take more than 60 sec. Thus the ceramic sensor can be used as a alcohol sensor in an ambient aunosphere. As the oxygen concentration is increased from 0.1 to 10 precent($10^3-10^6ppm$), the resistance decreases rapidly but stabilizes at higher concentration.

  • PDF

Development of Type3 Composite Cylinder for Fuel Cell Vehicle (연료전지 차량용 TYPE3 복합재 압력용기 개발)

  • Park, Ji-Sang;Cheung, Sang-Su;Chung, Jae-Han;Cho, Sung-Min;Kim, Tae-Wook
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.51-57
    • /
    • 2008
  • The objective of this study is to develop and validate a compressed hydrogen storage system for fuel cell vehicles. The type3 composite cylinder consists of full wrapped composites on a seamless aluminum liner. The key technologies, including design, analysis, and optimized fabrication process for 350bar composite cylinder, were established and verified, and the facilities for fabrication and validation testing have been constructed. Prototype cylinders were fabricated and validated through burst test and ambient cycling test in accordance with international standard.

  • PDF

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.118-122
    • /
    • 2006
  • Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Some Crystalline Properties and Growth Condition of BP(100)Epitaxially Grown on Si(100) Substrates (Si(100) 기판위에 에피텍시된 BP(100)의 성장조건 및 결정성)

  • Kim, Chul Ju;Koh, Youn Kyu;Ahn, Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.754-757
    • /
    • 1986
  • Boron monophosphide(100) was eitaxially grown on Si(100) substrate by thermal reaction of B2H6 and PH3 in hydrogen ambient. In an LPCVD system, the growth condition was studied as a function of gas mixture composition and temperature. For the growth temperature of 950\ulcorner in the constant flow rate (partial pressure) of B2H6, n-BP with c(2x2) surface structure was obtained in the PH3 partial pressure of 300-500 cc/min. On the other hand, for the growth temperature of 1080\ulcorner, p-BP with surface structure was observed for the PH3 partial pressure of 400-500cc/min.

  • PDF

Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow (Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성)

  • Kim, Dong-Won;Kim, Heung-Gu;Um, Ki-Youn;Kim, Sang-Ho;Lee, In-Seon;Park, Jong-Su;Ryi, Shin-Kun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.160-165
    • /
    • 2006
  • A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of $2{\mu}m$ in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of $4{\mu}m$ and $0.5{\mu}m$, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at $700^{\circ}C$ was performed for an hour in $H_2$ ambient. And, as a result PdCu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in $H_2/N_2$ mixtures.

Influence of the hydrogen post-annealing on the electrical properties of metal/alumina/silicon-nitride/silicon-oxide/silicon capacitors for flash memories

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.122-122
    • /
    • 2008
  • Recently, Metal/Alumina/Silicon-Nitride/Silicon-Oxide/Silicon (MANOS) structures are one of the most attractive candidates to realize vertical scaling of high-density NAND flash memory [1]. However, as ANO layers are miniaturized, negative and positive bias temperature instability (NBTI/PBTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density increase, ${\Delta}D_{it}$, the gate leakage current, ${\Delta}I_G$. and the retention characteristics, in MONOS capacitors, becomes an important issue in terms of reliability. It is well known that tunnel oxide degradation is a result of the oxide and interfacial traps generation during FN (Fowler-Nordheim) stress [2]. Because the bias temperature stress causes an increase of both interfacial-traps and fixed oxide charge could be a factor, witch can degrade device reliability during the program and erase operation. However, few studies on NBTI/PBTI have been conducted on improving the reliability of MONOS devices. In this work, we investigate the effect of post-annealing gas on bias temperature instability (BTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density shift, ${\Delta}I_G$ retention characteristics, and the gate leakage current characteristics of MANOS capacitors. MANOS samples annealed at $950^{\circ}C$ for 30 s by a rapid thermal process were treated via additional annealing in a furnace, using annealing gases $N_2$ and $N_2-H_2$ (2 % hydrogen and 98 % nitrogen mixture gases) at $450^{\circ}C$ for 30 min. MANOS samples annealed in $N_2-H_2$ ambient had the lowest flat band voltage shift, ${\Delta}V_{FB}$ = 1.09/0.63 V at the program/erase state, and the good retention characteristics, 123/84 mV/decade at the program/erase state more than the sample annealed at $N_2$ ambient.

  • PDF

Low-Oxygen Atmosphere and its Predictors among Agricultural Shallow Wells in Northern Thailand

  • Wuthichotwanichgij, Gobchok;Geater, Alan F.
    • Safety and Health at Work
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Background: In 2006, three farmers died at the bottom of an agricultural shallow well where the atmosphere contained only 6% oxygen. This study aimed to document the variability of levels of oxygen and selected hazardous gases in the atmosphere of wells, and to identify ambient conditions associated with the low-oxygen situation. Methods: A cross-sectional survey, conducted in June 2007 and July 2007, measured the levels of oxygen, carbon monoxide, hydrogen sulfide, and explosive gas (percentage of lower explosive limit) at different depths of the atmosphere inside 253 wells in Kamphaengphet and Phitsanulok provinces. Ambient conditions and well use by farmers were recorded. Carbon dioxide was measured in a subset of wells. Variables independently associated with low-oxygen condition (<19.5%) were identified using multivariate logistic regression. Results: One in five agricultural shallow wells had a low-oxygen status, with oxygen concentration decreasing with increasing depth within the well. The deepest-depth oxygen reading ranged from 0.0% to 20.9%. Low levels of other hazardous gases were detected in a small number of wells. The low-oxygen status was independently associated with the depth of the atmosphere column to the water surface [odds ratio (OR) = 13.5 for 8-11 m vs. <6 m], depth of water (OR = 0.17 for 3-<8 m vs. 0-1 m), well cover (OR = 3.95), time elapsed since the last rainfall (OR = 7.44 for >2 days vs. <1 day), and location of well in sandy soil (OR = 3.72). Among 11 wells tested, carbon dioxide was detected in high concentration (>25,000 ppm) in seven wells with a low oxygen level. Conclusion: Oxygen concentrations in the wells vary widely even within a small area and decrease with increasing depth.

Effect of Sulfur Dioxide and Hydrogen Fluoride on Rice Plant Growth in Industrial Estate (공업단지 주변에서의 아황산가스 및 불화수소가 수도 생육에 미치는 영향)

  • Wan Cheol, Park;Kwang-Ho Kim;Ki Joon, Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.17-21
    • /
    • 1991
  • The study was performed to investigate the effects of gaseous emission of sulfur dioxide and hydrogen fluoride on the growth of rice plant under stressed field conditions. This study is specifically dealt with multiple effects of sulfur dioxide and hydrogen fluoride on various plant growth indicators such as leaf damage, weight of grain, panicles per hill, spikelets per panicle and percent fertility. It appears that there is a good correlation between ambient concentrations of sulfur oxides and sulfur contents found in leaves with an average correlation coefficient of 0.868 within a 1% significance level. A better multiple correlation was found between percent leaf damage and sulfur and fluorine contents found in leaf with a significance of 1% level. The correlation coefficient ranges from 0.807 to 0.978 with an average being 0.922. An evaluation of data observed has demonstrated that both panicles per hill and percent fertility are significantly affected by air pollutants. As expected, hydrogen fluorides have more effects than sulfur oxides. It is, however, interesting to note that spikelets per panicle has slightly been affected while no indication of effects on l000-grain weight has been observed. This may lead to a conclusion that a reduction in yield of rice under polluted field conditions may have more been caused by the diminution panicles per hill and percent fertility rather than by the diminution of spikelets per panicle and grain weight.

  • PDF