DOI QR코드

DOI QR Code

Tribological Properties of Annealed Diamond-like Carbon Film Synthesized by RF PECVD Method

  • Choi, Won-Seok (Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
  • Published : 2006.06.01

Abstract

Diamond-like carbon (DLC) films were prepared on silicon substrates by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the tribological properties of the DLC films using friction force microscopy (FFM). The films were annealed at various temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film was observed by scanning electron microscopy (SEM) and surface profile analysis. The surface morphology and surface energy of the films were examined using atomic force microscopy and contact angle measurement, respectively. The hardness of the DLC film was measured as a function of the post annealing temperature using a nano-indenter. The tribological characteristics were investigated by atomic force microscopy in FFM mode.

Keywords

References

  1. P. Stumm, D. A. Drabold, and P. A. Fedders, 'Defects, doping, and conduction mechanisms in nitrogen-doped tetrahedral amorphous carbon', J. Appl. Phys., Vol. 81, p. 1289, 1997 https://doi.org/10.1063/1.363907
  2. A. Grill, 'Electrical and optical properties of diamond-like carbon', Thin Solid Films, Vol. 355, p. 189, 1999 https://doi.org/10.1016/S0040-6090(99)00516-7
  3. U. Beerschwinger, T. Albrecht, D. Mathieson, R. L. Reuben, S. J. Yang, and M. Taghizadeh, 'Wear at microscopic scales and light loads for MEMS applications', Wear, Vol. 181-183, p. 426,1995 https://doi.org/10.1016/0043-1648(95)90051-9
  4. R. Hauert, 'An overview on the tribological behavior of diamond-like carbon in technical and medical applications', Tribology International, Vol. 37, p. 991, 2004 https://doi.org/10.1016/j.triboint.2004.07.017
  5. T. A. Friedmann, K. F. McCarty, J. C. Barbour, M. P. Siegal, and D. C. Dibble, 'Thermal stability of amorphous carbon films grown by pulsed laser deposition', Appl. Phys. Lett., Vol. 68, p. 1643, 1996 https://doi.org/10.1063/1.115891
  6. S. Anders, J. Diaz, J. W. Ager, R. Y. Lo, and D. B. Bogy, 'Thermal stability of amorphous hard carbon films produced by cathodic arc deposition', Appl. Phys. Lett., Vol. 71, p. 3367, 1997 https://doi.org/10.1063/1.120339
  7. N. Savvides, 'Optical constants and associated functions of metastable diamondlike amorphous carbon films in the energy range 0.5-7.3 eV', J. Appl. Phys., Vol. 59, p. 4133, 1986 https://doi.org/10.1063/1.336672
  8. Y. F. Lu, S. M. Huang, C. H. A. Huan, and X. F. Luo, 'Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane', Appl. Phys. A., Vol. 68, p. 647, 1999 https://doi.org/10.1007/s003390050955
  9. M. A. Tamor, C. H. Wu, R. O. Carter, and N. E. Lindsay, 'Pendant benzene in hydrogenated diamond-like carbon', Appl. Phys. Lett., Vol. 55, p. 1388. 1989 https://doi.org/10.1063/1.101603
  10. J.-W. Chung, C.-S. Lee, D.-H. Ko, J. H. Han, K. Y. Eun, and K.-R. Lee, 'Biaxial elastic modulus of very thin diamond-like carbon (DLC) films', Diam. Relat. Mater., Vol. 10, p. 2069, 2001 https://doi.org/10.1016/S0925-9635(01)00481-2
  11. T. Michler, M. Grischke, I. Traus, K. Bewilogua, and H. Dimigen, 'DLC Films deposited by bipolar pulsed DC PACVD', Diam. Relat. Mater., Vol. 7, p. 459, 1998 https://doi.org/10.1016/S0925-9635(97)00236-7
  12. C.-L. Cheng, C.-T. Chia, C.-C. Chiu, C.-C. Wu, and I.-N. Lin, 'Hydrogen effects on the post-production modification of diamond-like carbon produced by pulsed laser deposition', Diam. Relat. Mater., Vol. 10, p. 970, 2001 https://doi.org/10.1016/S0925-9635(00)00508-2
  13. J. Robertson, 'Mechanical properties and structure of diamond-like carbon', Diam. Relat. Mater., Vol. 1, p. 397, 1992 https://doi.org/10.1016/0925-9635(92)90137-D
  14. A. Grill, V. Patel, and B. S. Meyerson, 'Optical and tribological properties of heat-treated diamond-like carbon', J. Mater. Res., Vol. 5, p. 2531, 1990 https://doi.org/10.1557/JMR.1990.2531
  15. J. W. Ager III, S. Anders, A. Anders, and L. G. Brown, 'Effect of intrinsic growth stress on the Raman spectra of vacuum-are-deposited amorphous carbon films', Appl. Phys. Lett., Vol. 66, p. 2531, 1995 https://doi.org/10.1063/1.113157
  16. J. W. Glesener and A. A. Morrish, 'Investigation of the temperature dependence of the field emission current of polycrystalline diamond films', Appl. Phys. Lett., Vol. 69, p. 785, 1996 https://doi.org/10.1063/1.117891
  17. D. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, 'Modeling studies of amorphous carbon', Phys. Rev. B, Vol. 30, p. 870, 1984 https://doi.org/10.1103/PhysRevB.30.870
  18. H. L. Chan, U. Ekanayake, A. Kumar, M. R. Alam, Q. You, R. B. Inturi, N. Shu, and J. A. Barnard, 'Nano-indentation studies of hard coatings prepared by laser ablation', Appl. Surf. Sci., Vol. 109-110, p. 58, 1997 https://doi.org/10.1016/S0169-4332(96)00906-3
  19. L. Y. Huang, J. W. Zhao, K. W. Xu, and J. Lu, 'A new method for evaluating the scratch resistance of diamond-like carbon films by the nano-scratch technique', Diam. Relat. Mater., Vol. 11, p. 1454, 2002 https://doi.org/10.1016/S0925-9635(02)00045-6
  20. SEIKO SPA400 FFM mode guide book

Cited by

  1. A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices vol.19, pp.11, 2006, https://doi.org/10.4313/JKEM.2006.19.11.1010