• Title/Summary/Keyword: Hydrogen Separation

Search Result 374, Processing Time 0.03 seconds

Synthesis and characterization of polymer electrolyte membrane for fuel cell including sulfonated bis (4-fluorophenyl) phenylphosphine oxide (술폰화된 비스(4-플루오로페닐) 페닐포스핀옥사이드를 포함한 연료전지용 고분자 전해질막의 합성과 특성분석)

  • Yoo, Eun Sil;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.176-183
    • /
    • 2016
  • This study relates to a polymer electrolyte membrane for improved performance fuel cell, were researched with respect to properties required for driving a fuel cell. The bis(4-fluorophenyl)phenyl phosphine oxide was sulfonated using fuming sulfuric acid. Synthetic hydrophilic oligomer and the hydrophobic oligomer and the block copolymers were prepared via aromatic nucleophilic substitution polycondensation. A block copolymer structure and degree of sulfonation was analyzed by $^1H$-NMR and gel permeation chromatography(GPC) analysis. Thermal stability was confirmed by thermogravimetric analysis(TGA), block copolymer was stable at high temperature(>$200^{\circ}C$), The ion conductivity was measured in order to demonstrate the performance of fuel cell. Synthesis membrane was the increase of temperature was improved conductivity up to 58 mS/cm due to the influence of the developed ion clusters. The phase separation of the polymer was observed to make AFM analysis.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

A Study on Cooling Characteristic of TMA-Water Clathrate Compound for Low Temperature Latent Heat Storage (저온잠열저장을 위한 TMA-물계 포접화합물의 냉각특성에 대한 연구)

  • Kim, Chang-Oh;Kim, Jin-Heung;Chung, Nak-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2471-2475
    • /
    • 2007
  • Clathrate compound is the material that host in hydrogen bond forms cage and guest is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation. But clathrate compound still had supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. In this study was investigated the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of 20${\sim}$25 wt% as a low temperature latent heat storage material. And ethanol$(CH_3CH_2OH)$ was added and its cooling characteristics were studied experimentally to restrain supercooling of TMA-water clathrate compound.

  • PDF

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

High Temperature Corrosion in Carbon-Rich Gases

  • Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.

Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods (매크로 다공성 Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] 막대에서 Caffeine과 Tryptophan의 체류 메카니즘)

  • Jin, Longmei;Yan, Hongyuan;Zheng, Jinzhu;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.401-404
    • /
    • 2006
  • Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-Ah;Choi, Seong-Hun;Hwang, Sang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and all and water generated from electrochemical reaction in diffusion layer In this study, fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode electrode together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in nterdigitated flow channel. The effect of temperature and stoichiometric number on performance can be calculated and analyzed as well.

  • PDF

Stellar Wind Accretion and Raman O VI Spectroscopy of the Symbiotic Star AG Draconis

  • Lee, Young-Min;Lee, Hee-Won;Lee, Ho-Gyu;Angeloni, Rodolfo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.63.4-64
    • /
    • 2018
  • High resolution spectroscopy of the yellow symbiotic star AG Draconis is performed with the Canada-France-Hawaii Telescope to analyse the line profiles of Raman scattered O VI broad emission features at $6825{\AA}$ and $7082{\AA}$ with a view to investigating the wind accretion process from the mass losing giant to the white dwarf. These two spectral features are formed through inelastic scattering of O $VI{\lambda}{\lambda}32$ and 1038 with atomic hydrogen. We find that these features exhibit double-component profiles with red parts stronger than blue ones with the velocity separation of ~ 60 km s-1 in the O VI velocity space. Monte Carlo simulations for O VI line radiative transfer are performed by assuming that the O VI emission region constitutes a part of the accretion flow around the white dwarf and that Raman O VI features are formed in the neutral part of the slow stellar wind from the giant companion. The overall Raman O VI profiles are reasonably fit with an azimuthally asymmetric accretion flow and the mass loss rate ~ 4 ${\times}$ 10^{-7} M_sun yr^{-1}. We also find that additional bipolar neutral regions moving away with a speed ~ 70 km s^{-1} in the directions perpendicular to the orbital plane provide considerably improved fit to the red wing parts of Raman features.

  • PDF

Treatment Efficiency of Complex Wastewater by Fenton's Oxidation Condition (펜톤산화에 따른 복합폐수의 처리효율연구)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.446-450
    • /
    • 2006
  • In order to treat the wastewater containing organic compound, pre-treatment system connected with MSP(molecular separation process) was investigated. With the aim of selecting an optimum process of Fenton's oxidation, removal efficiency of each process in the optimum reaction condition was recommended. The $Fe/H_{2}O_{2}$(ferric sulfate to hydrogen peroxide)reagent is referred to as the Fenton's regent, which produces hydroxyl radicals by the interaction of Fe with $H_{2}O_{2}$. The powerful oxidizing ability and extreme kinetic reactively of the hydroxyl radical was well established. Increasing dosage of $Fe/H_{2}O_{2}$ increased removal efficiency as molar ratio of $Fe/H_{2}O_{2}$ between 0.2 and 2.5. Optimum dosage of molar ratio was 1. The removal efficiency for reaction condition was increased as pH decreased when the molar ratio of $Fe/H_{2}O_{2}$ was 1.7. Fenton's oxidation was most efficient in the reaction time 35 min for complex wastewater. Also, coagulation aid experiments using kaolin resulted in 3% of kaolin dosage.