DOI QR코드

DOI QR Code

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process

전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상

  • Joongwon, Park (Department of Chemical Engineering, Kwangwoon University) ;
  • Rina, Kim (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hyunju, Lee (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Min-seuk, Kim (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hiesang, Sohn (Department of Chemical Engineering, Kwangwoon University)
  • 박중원 (광운대학교 화학공학과) ;
  • 김리나 (한국지질자원연구원 자원활용연구본부) ;
  • 이현주 (한국지질자원연구원 자원활용연구본부) ;
  • 김민석 (한국지질자원연구원 자원활용연구본부) ;
  • 손희상 (광운대학교 화학공학과)
  • Received : 2022.11.24
  • Accepted : 2022.12.09
  • Published : 2022.12.31

Abstract

This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

본 연구는 전기투석과 용매추출을 융합한 희유금속 회수 공정에서 분리막과 음이온교환막의 개질을 통해 유기상과 수상에 대한 분리막의 낮은 젖음성 및 AEM을 통한 수소이온 투과로 인한 금속이온의 회수 효율 감소를 개선하였다. 구체적으로, 분리막 표면 중 한면은 polydopamine (PDA) 통한 친수성 개질, 다른 면은 SiO2 또는 graphene oxide를 통한 친유성개질을 함으로써 분리막의 젖음성을 개선하였다. 또한, 음이온교환막의 표면을 polyethyleneimine, PDA, poly(vinylidene fluoride) 등을 이용, 개질해 수분 흡수(Water uptake) 감소 및 기공구조 변화를 통해 수소이온 수송을 억제해 수소이온 투과를 억제할 수 있다. 개질된 막 표면 형상과 화학적 특성 및 조성은 주사전자현미경과 푸리에변환 적외선 분광법을 통해 확인되었고, 이를 구리 이온 회수 시스템에 적용해 향상된 추출 및 탈거 효율과 수소이온 수송 억제능을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구되었습니다. 또한, 본 연구는 2022년도 정부의 재원으로 한국연구재단 기초연구사업 및 한국 연구재단-나노·소재기술개발사업의 지원을 받아 수행된 연구 (No. NRF-2020R1F1A1065536, 2009-0082580) 이며, 한국지질자원연구원 주요사업인 '전기투석을 이용한 Zero-emission 유가금속 분리정제기술 탐색 연구 (21-3212-2)' 과제의 연구비 지원으로 수행되었습니다.

References

  1. K. Kuroda and M. Ueda, "Engineering of microorganisms towards recovery of rare metal ions", Appl. Microbiol. Biotechnol., 87, 53 (2010).
  2. B. Ji and W. Zhang, "Adsorption of cerium (III) by zeolites synthesized from kaolinite after rare earth elements (REEs) recovery", Chemosphere, 303, 1 (2022).
  3. K. Binnemans, P. T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, and M. Buchert, "Recycling of rare earths: A critical review", J. Clean. Prod., 51, 1 (2013).
  4. W. Zhang, M. Rezaee, A. Bhagavatula, Y. Li, J. Groppo, and R. Honaker, "A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products", Int. J. Coal Prep. Util., 35, 295 (2015).
  5. Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. H. Shin, J.-M. Oh, T. Lee, C. Park, A. Seubsaic, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022).
  6. S. Lee, S.-S. Choi, J.-H. Hyun, D.-E. Kim, Y.-W. Park, J.-S. Yu, S.-Y. Jeon, J. Park, W. H. Shin, and H. Sohn, "Nanostructured PVdF-HFP/TiO2 composite as protective layer on lithium metal battery anode with enhanced electrochemical performance", Membr. J., 31, 417 (2021).
  7. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet- TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 2021, 1 (2021).
  8. D. Seok, W. H. Shin, S. W. Kang, and H. Sohn, "Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility", J. Alloys Comp., 870, 159267 (2021).
  9. S. Lee, D. Seok, Y. Jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membr. J., 30, 38 (2020).
  10. Y. Jeong, D. Seok, S. Lee, W. H Shin, and H. Sohn, "Polymer/Inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membr. J., 30, 30 (2020).
  11. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019).
  12. K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018).
  13. J. H. Lim, J. H. Won, M. K. Kim, D. S. Jung, M. Kim, S.-M. Koo, J.-M. Oh, H. M. Jeong, H. Sohn, W. H. Shin, and C. Park, "Synthesis of flower-like manganese oxide for accelerated surface redox reactions on nitrogen-rich graphene of fast charge transport for sustainable aqueous energy storage", J. Mater. Chem. A, 10, 7668 (2022).
  14. H. Sohn, W. H. Shin, D. Seok, T. Lee, C. Park, J.-M. Oh, S. Y. Kim, and A. Seubsai, "Novel hybrid conductor of irregularly patterned graphene mesh and silver nanowire networks", Micromachines, 11, 578 (2020).
  15. J. E. Silva, A. P. Paiva, D. Soares, A. Labrincha, and F. Castro, "Solvent extraction applied to the recovery of heavy metals from galvanic sludge", J. Hazard. Mater., 120, 113 (2005).
  16. J.-M. A. Juve, F. M. S. Christensen, Y. Wang, and Z. Wei, "Electrodialysis for metal removal and recovery: A review", Chem. Eng. J., 435, 2 (2022).
  17. Bi Q, Xue J, Guo Y, Li G, and Cui H. "A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane", Water Sci Technol., 74, 10, 2454 (2016).
  18. D. Wang, Q. Chen, J. Hu, M. Fu, and Y. Luo, "High flux recovery of copper(II) from ammoniacal solution with stable sandwich supported liquid membrane", Ind. Eng. Chem. Res., 54, 17, 4823 (2015).
  19. R. D. Patel, K.-C. Lang, and I. F. Miller, "Polarization in ion-exchange membrane electrodialysis", Ind. Eng. Chem. Fundamen., 16, 340 (1977).
  20. T. Mubita, S. Porada, P. Aerts, and A. van der Wal, "Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance", J. Membr. Sci., 607, 118000 (2020).
  21. A. Popov, "Electrodialysis through liquid ion-exchange membranes and the oil-water interface", In: A. Volkov and D. Deamer (Eds.), Liquid-Liquid Interface: Theory and Methods, CRC Press, NY, L., Tokyo, 333 (1996).
  22. B. A. Purin, "The influence of an electric field on the membrane extraction of substances", Proc. Inter'l Solvent Extr. Symp., Moscow, 234 (1998).
  23. I. Bustero, Y. Cheng, J. C. Mugica, T. Fernandez-Otero, A. F. Silva, and D. J. Schiffrin, "Electro-assisted solvent extraction of Cu2+, Ni2+ and Cd2+", Electrochim. Acta, 44, 29 (1998).
  24. T. Zh. Sadyrbaeva, "Separation of platinum(IV) and iron(III) by liquid membranes during electrodialysis", Russ. J. Appl. Chem., 76, 78 (2003).
  25. T. Zh. Sadyrbaeva, "Separation of copper(II) from palladium(II) and platinum(IV) by di(2-ethylhexyl) phosphoric acid-based liquid membranes during electrodialysis", J. Membr. Sci., 275, 195-201 (2006). https://doi.org/10.1016/j.memsci.2005.09.020
  26. T. Zh. Sadyrbaeva and B. A. Purin, "Membrane extraction of copper(II) by di(2-ethylhexyl)phosphoric acid during electrodialysis", Russ. Chem. Technol., 11, 23 (2000).
  27. X. J. Yang, A. G. Fane, and K. Soldenhoff, "Comparison of liquid membrane processes for metal separations: Permeability, stability and selectivity", Ind. Eng. Chem. Res., 42, 392 (2003).
  28. M.-J. Kim, D.-S. Ko, J.-H. Kim, E.-H. Cho, D. J. Yang, C. Kwak, and H. Sohn, "Silver nanowires network film with enhanced crystallinity toward mechano-electrically sustainable flexible-electrode", Adv. Mater. Inter., 6, 2000838 (2021).
  29. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, "High-efficient synthesis of graphene oxide based on improved hummers method", Sci. Rep., 6, 36143 (2016).
  30. J. Chen, B. Yao, C. Li, and G. Shi, "An improved hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225 (2013).
  31. J. Chen, Y. Li, L. Huang, C. Li, and G. Shi, "High- yield preparation of graphene oxide from small graphite flakes via an improved hummers method with a simple purification process", Carbon, 81, 826 (2015).
  32. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic (NixPt1-x) alloy particles within carbon framework: High-performance catalysts for hydrogenation reaction and oxygen reduction reaction", ACS Appl. Mater. Interfaces, 11, 21435 (2019).
  33. S. Jeong, H. Sohn, and S. W. Kang, "Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport", Chem. Eng. J., 333, 276 (2018).
  34. D. Seok, Y. Kim, and H. Sohn, "Synthesis of Fe3O4/ porous carbon composite for efficient Cu2+ ions removal", Membrane J., 29, 308 (2019).
  35. E. Abouzari-Lotf, M. V. Jacob, H. Ghassemi, M. Zakeri, M. M. Nasef, Y. Abdolahi, A. Abbasi, and A. Ahmad, "Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains", Sci. Rep., 11, 3764 (2021).
  36. S. H. Park, H. J. Kim, J. Lee, Y. K. Jeong, J. W. Choi, and H. Lee, "Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries", ACS Appl. Mater. Interfaces, 8, 13973, (2016).
  37. T. Z. Sadyrbaeva, "Recovery of cobalt(II) by the hybrid liquid membrane-electrodialysis-electrolysis process", Electrochim. Acta, 133, 161 (2014).
  38. N. Agmon, "The Grotthuss mechanism", Chem. Phys. Lett., 244, 456-462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J
  39. K. D. Kreuer, A. Rabenau, W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chem. Int. Ed., 21, 208 (1982).
  40. R. Xie, P. Ning, G. Qu, J. Deng, Z. Li, Z. Li, and J. Li, "Preparation of proton block and highly conductive AEM by creating PANI dominated and hydrophobicity ion channels for sulfuric acid enrichment", Polym. Adv. Technol., 32, 2131 (2021).
  41. R. Xie, P. Ning, G. Qu, J. Li, M. Ren, C. Du, H. Gao, and Z. Li, "Self-made anion-exchange membrane with polyaniline as an additive for sulfuric acid enrichment", Chem. Eng. J., 341, 298 (2018).
  42. L. Hao, Z. Chi, and J. Wang, "Co-deposition of hyperbranched polyethyleneimine and dopamine on anion exchange membrane for improved antifouling performance", J. Membr. Sci., 640, 119811 (2021).
  43. H. Sohn, S. Y. Kim, W. Shin, J. M. Lee, K.-S. Moon, H. Lee, D.-J. Yun, I. T. Han, C. Kwak, and S.-J. Hwang, "Novel flexible transparent conductive films with enhanced chemical and electromechanical sustainability: TiO2 nanosheet-ag nanowire hybrid", ACS Appl. Mater. Interfaces, 10, 2688 (2018).