Browse > Article

High Temperature Corrosion in Carbon-Rich Gases  

Young, D.J. (School of Materials Science and Engineering, University of New South Wales UNSW)
Publication Information
Corrosion Science and Technology / v.7, no.2, 2008 , pp. 69-76 More about this Journal
Abstract
Common methods for large scale hydrogen production, such as steam reforming and coal gasification, also involve production of carbonaceous gases. It is therefore necessary to handle process gas streams involving various mixtures of hydrocarbons, $H_2$, $H_2O$, CO and $CO_2$ at moderate to high temperatures. These gases pose a variety of corrosion threats to the alloys used in plant construction. Carbon is a particularly aggressive corrodent, leading to carburisation and, at high carbon activities, to metal dusting. The behaviour of commercial heat resisting alloys 602CA and 800, together with that of 304 stainless steel, was studied during thermal cycling in $CO/CO_2$ at $650-750^{\circ}C$, and also in $CO/H_2/H_2O$ at $680^{\circ}C$. Thermal cycling caused repeated scale separation, which accelerated chromium depletion from the alloy subsurface regions. The $CO/H_2/H_2O$ gas, with $a_C=2.9$ and $p(O_2)=5\times10^{-23}$ atm, caused relatively rapid metal dusting, accompanied by some internal carburisation. In contrast, the $CO/CO_2$ gas, with $a_C=7$ and $p(O_2)=10^{-23}-10^{-24}$ atm caused internal precipitation in all three alloys, but no dusting. Inward diffusion of oxygen led to in situ oxidation of internal carbides. The very different reaction morphologies produced by the two gas mixtures are discussed in terms of competing gas-alloy reaction steps.
Keywords
internal oxidation; carburisation; coking; catalysis; dusting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Perkins and A. Goldberg, Oxid. Met., 11, 23 (1977)   DOI
2 C. H. Toh, P. R. Munroe, D. J. Young, Oxid. Met., 28 (2000)
3 R. Schneider, E. Pippel, J. Woltersadorf, S. Strauss, H. J. Grabke, Mater. Technol., 68, 326 (1997)
4 T. Wada, H. Weda, I. F. Elliott, J. Chipman, Met. Trans., 2, 2199 (1971)   DOI
5 J. Zhang and D. J. Young, Corros. Sci., 49, 1496 (2007)   DOI   ScienceOn
6 S. Leistikow, Mater. Chem., 1, 189 (1976)   DOI   ScienceOn
7 M. Hansel, C. Boddington, D.J. Young, Corros. Sci., 45, 967 (2003)   DOI   ScienceOn
8 H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, J. Klower, D. C. Agarwal, Mat. Performance, 27, 7 (1998)
9 J. C. Nava Paz and H. J. Grabke, Oxid. Met., 39, 437 (1993)   DOI
10 H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, S. Strauss, Mater Corros., 47, 495 (1996)   DOI   ScienceOn
11 S. K. Bose, H. J. Grabke, Z. Metall., 69, 8 (1978)
12 H. E. McCoy, Corrosion, 21, 84 (1965)   DOI
13 H. J. Grabke, R. Krajak, E. M. Muller-Lorenz, B. Ekter, M. Lucas, D. Monceau, Steel Research, 68, 179 (1997)   DOI
14 R. F. Hochman, Proc. 4th Int. Cong. Met. Corrosion, p. 258, NACE, Houston (1972)
15 J. C. Nava Paz and H. J. Grabke, Oxid. Met., 39, 437 (1993)   DOI
16 D. J. Young and S. Watson, Oxid. Met., 44, 239 (1955)   DOI
17 C. S. Giggins and F. S. Pettit, Oxid. Metals, 14, 363 (1980)   DOI
18 F. S. Pettit, J. A. Goebel, G. W. Goward, Corros. Sci., 9, 903 (1969)   DOI   ScienceOn
19 G. H. Meier, W. C. Coons, R. A. Perkins, Oxid. Met., 17, 235 (1982)   DOI
20 R. T. K. Baker, M. A. Barker, P. S. Harris, F. S. Yeates, R. J. Waite, J. Catal., 26, 51 (1972)   DOI   ScienceOn
21 C. H. Toh, P. R. Munroe, D. J. Young, K. Foger, Mater. High Temp. 20, 129 (2003)   DOI   ScienceOn
22 C. Wagner, Z. Electrochem., 63, 772 (1959)
23 H. J. Grabke, K. Ohla, J. Peters, I. Wolf, Werkst. Korros., 34, 495 (1983)   DOI
24 C. M. Chun, J. D. Mumford and T. A. Ramanarayanan, J. Electrochem. Soc., 147, 3680 (2000)   DOI   ScienceOn
25 X. G. Zheng, D. J. Young, Mater, Sci. Forum 251-4, 567 (1997)   DOI
26 J. A. Colwell and R. A. Rapp, Met. Trans. A 17A, 1065 (1986)
27 P. R. S. Jackson, D. J. Young, and D. L. Trimm, J. Mater. Sci., 21, 4376 (1986)   DOI
28 G. B. Gibbs, Oxid. Met., 7, 173 (1973)   DOI