Browse > Article

Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods  

Jin, Longmei (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
Yan, Hongyuan (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
Zheng, Jinzhu (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
Row, Kyung-Ho (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
Publication Information
KSBB Journal / v.21, no.5, 2006 , pp. 401-404 More about this Journal
Abstract
Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.
Keywords
Retention mechanism; macro porous monolithic column; polymerization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, D., Svec, F., and J. M. J. Fréchet (2004), Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins, J. Chromatogr. A. 1051, 53-60   DOI   ScienceOn
2 Hoegger, D. and R. Freitag (2001), Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography, J. Chromatogr. A. 914, 211-222   DOI   ScienceOn
3 Oberacher, H., Premstaller, A., and C. G. Huber (2004), Characterization of some physical and chromatographic properties of monolithic poly (styrene-co-divinylbenzene) columns, J. Chromatogr. A. 1030, 201-208   DOI   ScienceOn
4 Mayr, B. and M. R. Buchmeiser (2001), Influences of surface chemistry on the separation behavior of stationary phases for reversed-phase and ion-exchange chromatography: a comparison of coated and grafted supports prepared by ring-opening metathesis polymerization, J. Chromatogr. A. 907, 73-80   DOI   ScienceOn
5 Hilder, E. F., Svec, F., and J. M. J. Fréchet (2004), Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A. 1044, 3-22   DOI   ScienceOn
6 Hlözl, G., Oberacher, H., Pitsch, S., Stutz, A., and Huber, C. G. (2005), Analysis of Biological and Synthetic Ribonucleic Acids by Liquid Chromatography-Mass Spectrometry Using Monolithic Capillary Columns, Anal. Chem. 77, 673-680   DOI   ScienceOn
7 Coufal, P., Cihak, M., Suchankova, J., TesaSova, E., Bosakova, Z., and K. Stulik (2002), Methacrylate monolithic columns of 320 mm I.D. for capillary liquid chromatography, J. Chromatogr. A. 946, 99-106   DOI   ScienceOn
8 Svec, F. and J. M. J. Fréchet (1992), Continuous Rods of Macroporous Polymer as High-Performance Liquid Chromatography Separation Media, Anal. Chem. 64, 820-822   DOI
9 Le Gac, S., Carlier, J., Camart, C., Cren-Olive, C., and C. Rolando (2004), Monoliths for microfluidic devices in proteomics, J. Chromatogr. B. 808, 3-14   DOI   ScienceOn
10 Sugrue, E., Nesterenko, P. N., and B. Paull (2005), Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith, J. Chromatogr. A. 1075, 167-175   DOI   ScienceOn
11 Zhang, S., Huang, X., Zhang, J., and C. Horváth (2000), Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith, J. Chromatogr. A. 887, 465-477   DOI   ScienceOn
12 F. Svec (2004), Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths, J. Sep. Sci. 27, 747-766   DOI   ScienceOn
13 Palm, A. and M. Novotny (1997), Macroporous Polyacrylamide/Poly (ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography, Anal. Chem. 69, 4499-4507   DOI   ScienceOn
14 Hilder, E. F., Svec. F., and J. M. J. Frechet (2004), Shielded Stationary Phases Based on Porous Polymer Monoliths for the Capillary Electrochromatography of Highly Basic Biomolecules, Anal. Chem. 76, 3887-3892   DOI   ScienceOn
15 Walcher, W., Oberacher, H., Troiani, S., Holzl, G., Oefner, P., Zolla, L., and C. G. Huber (2002), Monolithic capillary columns for liquid chromatography-electrospray ionization mass spectrometry in proteomic and genomic research, J. Chromatogr. B. 782, 111-125   DOI   ScienceOn
16 Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., and N. Tanaka (1996), Octadecylsilylated porous silica rods as separation media for reversed phase liquid chromatography, Anal. Chem. 68, 3498-3505   DOI   ScienceOn
17 Xie, S., Allington, R. W., Svec, F., and J. M. J. Fréchet (1999), Rapid reversed-phase separation of proteins and peptides using optimized 'moulded' monolithic poly(styrene-co-divinylbenzene)columns, J. Chromatogr. A. 865, 169-174   DOI   ScienceOn
18 Mayr, B., Tessadri, R., Post, E., and M. R. Buchmeiser (2001), Metathesis-Based Monoliths: Influence of Polymerization Conditions on the Separation of Biomolecules, Anal. Chem. 73, 4071-4078   DOI   ScienceOn
19 Lammerhofer, M., Svec. F., Fréchet, J. M. J., and W. Lindner (2001), Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases, Chromatogr. A, 925, 265-277   DOI   ScienceOn
20 Peters, E. C., Petro, M., Svec, F., and J. M. J. Fréchet (1997), Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography, Anal. Chem. 69, 3646-3649   DOI   ScienceOn
21 Premstaller, A., Oberacher, H., Walcher, W., Timperio, A. M., Zolla, L., Chervet, J.-P., Cavusoglu, N., Van Dorsselaer, A., and C. G. Huber (2001), High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies, Anal. Chem. 73, 2390-2396   DOI   ScienceOn
22 Ericson, C. Hjerten (1999), Reversed-Phase Electrochromatography of Proteins on Modified Continuous Beds Using Normal-Flow and Counterflow Gradients. Theoretical and Practical Considerations, Anal. Chem. 71, 1621-1627   DOI   ScienceOn