Retention Mechanism of Caffeine and Tryptophan in Macroporous Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] Rods

매크로 다공성 Poly[Methacrylic Acid-co-Ethylene Glycol Dimenthacrylate] 막대에서 Caffeine과 Tryptophan의 체류 메카니즘

  • Jin, Longmei (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University) ;
  • Yan, Hongyuan (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University) ;
  • Zheng, Jinzhu (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
  • 김룡매 (인하대학교 화학공학과, 초정밀생물분리기술연구센터) ;
  • 염홍원 (인하대학교 화학공학과, 초정밀생물분리기술연구센터) ;
  • 정금주 (인하대학교 화학공학과, 초정밀생물분리기술연구센터) ;
  • 노경호 (인하대학교 화학공학과, 초정밀생물분리기술연구센터)
  • Published : 2006.10.30

Abstract

Macroporous Poly(Methacrylic acid-co-Ethylene Glycol Dimethacrylate) Rods were in situ thermal initialized within a empty column($3.9{\times}150mm$) by free radical polymerization. The polymerization mixture was consisted of monomer, cross-linking monomer, porogenic solvent, initiator and control the ratio of these materials, column efficiency could be developed. Caffeine and tryptophan as separation substances and the retention mechanism of this kind of monolithic column was mainly hydrogen bond function.

MAA와 EGDMA를 단량체 및 가교제로 한 일체형 컬럼은 친수성의 구조표면을 하고 있어 쉽게 시료와 수소결합 등 강한 상호작용을 할 수 있다. 본 실험에서는 카페인과 트립토판을 분리물질로 선택하였으나 완전한 분리도를 얻을 수가 없었다. 이는 일체형 컬럼의 제조 시 여러 요인에 기인하다. 중합혼합반응물질의 양의 조성과 반응조건이 적절하지 못하는 등 원인으로 생각된다. 따라서 일체형 컬럼의 분리도를 향상시키기 위한 많은 실험이 요구된다.

Keywords

References

  1. Hilder, E. F., Svec, F., and J. M. J. Fréchet (2004), Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A. 1044, 3-22 https://doi.org/10.1016/j.chroma.2004.04.057
  2. Le Gac, S., Carlier, J., Camart, C., Cren-Olive, C., and C. Rolando (2004), Monoliths for microfluidic devices in proteomics, J. Chromatogr. B. 808, 3-14 https://doi.org/10.1016/j.jchromb.2004.03.067
  3. Sugrue, E., Nesterenko, P. N., and B. Paull (2005), Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith, J. Chromatogr. A. 1075, 167-175 https://doi.org/10.1016/j.chroma.2005.03.126
  4. Xie, S., Allington, R. W., Svec, F., and J. M. J. Fréchet (1999), Rapid reversed-phase separation of proteins and peptides using optimized 'moulded' monolithic poly(styrene-co-divinylbenzene)columns, J. Chromatogr. A. 865, 169-174 https://doi.org/10.1016/S0021-9673(99)00981-4
  5. Lee, D., Svec, F., and J. M. J. Fréchet (2004), Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins, J. Chromatogr. A. 1051, 53-60 https://doi.org/10.1016/j.chroma.2004.04.047
  6. F. Svec (2004), Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths, J. Sep. Sci. 27, 747-766 https://doi.org/10.1002/jssc.200401721
  7. Svec, F. and J. M. J. Fréchet (1992), Continuous Rods of Macroporous Polymer as High-Performance Liquid Chromatography Separation Media, Anal. Chem. 64, 820-822 https://doi.org/10.1021/ac00031a022
  8. Palm, A. and M. Novotny (1997), Macroporous Polyacrylamide/Poly (ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography, Anal. Chem. 69, 4499-4507 https://doi.org/10.1021/ac970626g
  9. Hoegger, D. and R. Freitag (2001), Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography, J. Chromatogr. A. 914, 211-222 https://doi.org/10.1016/S0021-9673(00)01119-5
  10. Lammerhofer, M., Svec. F., Fréchet, J. M. J., and W. Lindner (2001), Capillary electrochromatography in anion-exchange and normal-phase mode using monolithic stationary phases, Chromatogr. A, 925, 265-277 https://doi.org/10.1016/S0021-9673(01)01034-2
  11. Peters, E. C., Petro, M., Svec, F., and J. M. J. Fréchet (1997), Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography, Anal. Chem. 69, 3646-3649 https://doi.org/10.1021/ac970377w
  12. Oberacher, H., Premstaller, A., and C. G. Huber (2004), Characterization of some physical and chromatographic properties of monolithic poly (styrene-co-divinylbenzene) columns, J. Chromatogr. A. 1030, 201-208 https://doi.org/10.1016/j.chroma.2004.01.009
  13. Mayr, B., Tessadri, R., Post, E., and M. R. Buchmeiser (2001), Metathesis-Based Monoliths: Influence of Polymerization Conditions on the Separation of Biomolecules, Anal. Chem. 73, 4071-4078 https://doi.org/10.1021/ac010452+
  14. Mayr, B. and M. R. Buchmeiser (2001), Influences of surface chemistry on the separation behavior of stationary phases for reversed-phase and ion-exchange chromatography: a comparison of coated and grafted supports prepared by ring-opening metathesis polymerization, J. Chromatogr. A. 907, 73-80 https://doi.org/10.1016/S0021-9673(00)01024-4
  15. Ericson, C. Hjerten (1999), Reversed-Phase Electrochromatography of Proteins on Modified Continuous Beds Using Normal-Flow and Counterflow Gradients. Theoretical and Practical Considerations, Anal. Chem. 71, 1621-1627 https://doi.org/10.1021/ac9811470
  16. Hilder, E. F., Svec. F., and J. M. J. Frechet (2004), Shielded Stationary Phases Based on Porous Polymer Monoliths for the Capillary Electrochromatography of Highly Basic Biomolecules, Anal. Chem. 76, 3887-3892 https://doi.org/10.1021/ac049732q
  17. Hlözl, G., Oberacher, H., Pitsch, S., Stutz, A., and Huber, C. G. (2005), Analysis of Biological and Synthetic Ribonucleic Acids by Liquid Chromatography-Mass Spectrometry Using Monolithic Capillary Columns, Anal. Chem. 77, 673-680 https://doi.org/10.1021/ac0487395
  18. Zhang, S., Huang, X., Zhang, J., and C. Horváth (2000), Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith, J. Chromatogr. A. 887, 465-477 https://doi.org/10.1016/S0021-9673(00)00250-8
  19. Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., and N. Tanaka (1996), Octadecylsilylated porous silica rods as separation media for reversed phase liquid chromatography, Anal. Chem. 68, 3498-3505 https://doi.org/10.1021/ac960281m
  20. Coufal, P., Cihak, M., Suchankova, J., TesaSova, E., Bosakova, Z., and K. Stulik (2002), Methacrylate monolithic columns of 320 mm I.D. for capillary liquid chromatography, J. Chromatogr. A. 946, 99-106 https://doi.org/10.1016/S0021-9673(01)01570-9
  21. Walcher, W., Oberacher, H., Troiani, S., Holzl, G., Oefner, P., Zolla, L., and C. G. Huber (2002), Monolithic capillary columns for liquid chromatography-electrospray ionization mass spectrometry in proteomic and genomic research, J. Chromatogr. B. 782, 111-125 https://doi.org/10.1016/S1570-0232(02)00667-0
  22. Premstaller, A., Oberacher, H., Walcher, W., Timperio, A. M., Zolla, L., Chervet, J.-P., Cavusoglu, N., Van Dorsselaer, A., and C. G. Huber (2001), High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry Using Monolithic Capillary Columns for Proteomic Studies, Anal. Chem. 73, 2390-2396 https://doi.org/10.1021/ac010046q