• Title/Summary/Keyword: Hydraulic Factor

Search Result 492, Processing Time 0.03 seconds

An Experimental Study on Hydraulic Characteristics in Seaclike Closure Gap (방조제 체절구간에서의 수리특성에 관한 실험적 연구)

  • 나정우;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.57-65
    • /
    • 1986
  • A new method of determining the discharge coefficients and velocity which are very important factor to calculate the weight of riprap materials in the seadike closure gap can be derived through the hydraulic model test. On the basis of the results of this study, general hydraulic aspects between gradual horizontal and vertical closure method are compared, and also discharge and velocity computation procedures are presented.

  • PDF

A Proposal for the Number of Investigation Wells for Optimal Radial Collector Well Design (방사형 집수정의 적정 설계를 위한 조사 물량 제안)

  • Choi, Myoung-Rak;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • In general, the estimation of optimum yield for the radial collector well is determined by the empirical equation or numerical modeling, in which hydraulic conductivity of the aquifer is a main influence factor. Hydraulic conductivities of 164 soil samples collected from boreholes and horizontal wells (average length: about 50 m) installed during well construction in the Anseong stream were drawn in two-dimensional map by the Kriging method and utilized in this study. Hydraulic conductivity analyses by Representative Elementary Count (REC) indicated the average hydraulic conductivity is similar to that of the pumping test when the number of samples reaches about 1,000, which correspond to 1,000 ㎡. Pumping test was also conducted at 1 pumping well and 13 observation wells to estimate hydraulic conductivities at each observation well. REC analysis indicated that the average value of hydraulic conductivity calculated from at least four observation wells is valid as a representative value. The overall result suggested that multiple observation wells or multiple pumping-observation well systems that are located within the range of horizontal wells should be utilized to properly estimate the representative hydraulic conductivity values and the yield of a radial collector well.

Estimation of Hydraulic Coefficients in An Ungaged Basin Using SWAT Model (SWAT 모형을 이용한 미계측 유역의 수리계수 산정)

  • Lee, Jong-So;Kim, Soo-Jun;Kim, Duck-Gil;Kang, Na-Rae;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.319-327
    • /
    • 2011
  • A hydraulic coefficient is a factor representing the hydraulic characteristics of the stream or river. For that reason, we survey stream characteristics such as cross section for performing the stream improvement plan and then we calculate hydraulic coefficient based on its surveyed results. This hydraulic coefficient can be used as an important parameter to calculate flood water level in stream, sediment discharge and water quality. However, we cannot calculate the hydraulic characteristics in an ungaged basin. To overcome this problem, we used the SWAT model for calculating the hydraulic coefficient in the ungaged basin.

Case study comparisons of computational fluid dynamics modeling versus tracer test to evaluate the hydraulic efficiency of clearwell (정수지 내 추적자 실험과 CFD(전산유체역학)의 상관관계 분석)

  • Kim, Tae-Kyun;Choi, Young-June;Jo, Young-Mahn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.635-642
    • /
    • 2011
  • Hydraulic efficiency was a vital component in evaluating the disinfection capability of clearwell. Current practice evaluates these system based on the tracer test only. In this paper, CFD(Computational Fluid Dynamics) was applied on the clearwell for alternating or supplementing the tracer test. The baffle factor derived from the CFD modeling closely matched the values obtained from full scale tracer testing. And, for suggesting proper numerical model in clearwell; the turbulence model, discretization scheme, convergence criteria were investigated through separate simulation runs. The model validation was conducted by comparing the simulated data with experimental data. In the turbulence model, the realizable ${\kappa}-{\varepsilon}$ model and the standard ${\kappa}-{\varepsilon}$ model were found to be more appropriate than RNG ${\kappa}-{\varepsilon}$ model. The residuals of convergence criteria should be used as not $10^{-3}$ but $10^{-4}$ or $10^{-5}$. In discretization scheme, the difference of simulated values in 1st, 2nd, 3rd upwind scheme was found to be insignificant. Moreover, the result of this study suggest that CFD modeling can be a reliable alternative to tracer testing for evaluating the hydraulic efficiency.

Hydraulic Design of Reactor Coolant Pump Considering Head Curve Slope at Design Point (양정곡선 기울기를 고려한 원자로 냉각재 펌프의 수력설계)

  • Yoo, Il-Su;Park, Mu-Ryong;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • The hydraulic part in reactor coolant pump consists of suction nozzle, impeller, diffuser, and discharge nozzle. Among them, impeller is required to be designed to satisfy performance requirements such as head, NPSHR, and head curve slope at design point. Present study is intended to suggest the preliminary design method sizing the impeller size to satisfy the design requirement particularly including head curve slope at design point. On a basis of preliminary design result, hydraulic components have been designed in detail by CFD and then manufactured in a reduced scale. Experiment in parallel with computational analysis has been executed in order to confirm the hydraulic performance. Comparison results show good agreement with design result, confirming the validity of design method suggested in this study.

A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank (수리/수치파동수조에서 안정적인 쓰나미 조파를 위한 고찰)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.805-817
    • /
    • 2016
  • This study considered the existing approximation theories of solitary wave for stable generation of it with different waveforms in a hydraulic/numerical wave tank for coping with the tsunami. Based on the approximation theory equations, two methods were proposed to estimate various waveforms of solitary wave. They estimate different waveforms and flow rates by applying waveform distribution factor and virtual depth factor with the original approximate expressions of solitary wave. Newly proposed estimation methods of solitary wave were applied in the wave generation of hydraulic/numerical wave tank. In the result, it was able to estimate the positional information signal of wave generator in the hydraulic wave tank and to find that the signal was very similar to an input signal of existing hydraulic model experiment. The waveform and velocity of solitary wave was applied to the numerical wave tank in order to generate wave, which enabled generate waveform of tsunami that was not reproduced with existing solitary wave approximation theory and found that the result had high conformity with existing experiment result. Therefore, it was able to validate and verify the two proposed estimation methods to generate stable tsunami in the hydraulic/numerical wave tank.

The Influence of K-ratio and Seepage Velocity on Piping Occurrence (Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구)

  • Huh, Kyung-Han;Chang, Ock-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.

Flow Distribution and Pressure Loss in Subchannels of a Wire-Wrapped 37-pin Rod Bundle for a Sodium-Cooled Fast Reactor

  • Chang, Seok-Kyu;Euh, Dong-Jin;Choi, Hae Seob;Kim, Hyungmo;Choi, Sun Rock;Lee, Hyeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.376-385
    • /
    • 2016
  • A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and $60^{\circ}C$ (equivalent to Re ~ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

Prediction of Corrosion Threshold Reached at Steel Reinforcement Embedded in Latex Modified Concrete with Mix Proportion Factor (배합변수에 따른 라텍스 개질 콘크리트 내에 정착된 보강철근의 부식개시시기 예측)

  • Park, Seung-Ki;Won, Jong-Pil;Park, Chan-Gi;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • This study were predicted the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC) which were applied the agricultural hydraulic concrete structures. Accelerated testing was accomplished to the evaluate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, the average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC were effected on the mix proportion factor including cement contents, latex content, and water-cement ratio. Especially, the average chloride diffusion coefficient, the corrosion threshold reached at reinforcement in LMC were affected by the all mix proportion factor.