DOI QR코드

DOI QR Code

A Study on Stable Generation of Tsunami in Hydraulic/Numerical Wave Tank

수리/수치파동수조에서 안정적인 쓰나미 조파를 위한 고찰

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 박종률 (국립재난안전연구원) ;
  • 전호성 (한국건설기술연구원) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • Received : 2016.02.03
  • Accepted : 2016.07.12
  • Published : 2016.10.01

Abstract

This study considered the existing approximation theories of solitary wave for stable generation of it with different waveforms in a hydraulic/numerical wave tank for coping with the tsunami. Based on the approximation theory equations, two methods were proposed to estimate various waveforms of solitary wave. They estimate different waveforms and flow rates by applying waveform distribution factor and virtual depth factor with the original approximate expressions of solitary wave. Newly proposed estimation methods of solitary wave were applied in the wave generation of hydraulic/numerical wave tank. In the result, it was able to estimate the positional information signal of wave generator in the hydraulic wave tank and to find that the signal was very similar to an input signal of existing hydraulic model experiment. The waveform and velocity of solitary wave was applied to the numerical wave tank in order to generate wave, which enabled generate waveform of tsunami that was not reproduced with existing solitary wave approximation theory and found that the result had high conformity with existing experiment result. Therefore, it was able to validate and verify the two proposed estimation methods to generate stable tsunami in the hydraulic/numerical wave tank.

본 연구에서는 쓰나미에 대응할 수 있는 다양한 파형의 고립파를 수리/수치파동수조에서 안정적으로 생성시키기 위하여 기존의 고립파 근사이론에 관한 검토를 수행하였다. 그리고 이 근사이론식을 토대로 다양한 고립파의 파형을 추정할 수 있는 두 가지 방법을 제안하였다. 이 방법들은 기존의 고립파 근사식들을 토대로 파형분포조절계수와 가상수심계수를 적용하여 다양한 파형 및 유속을 추정하는 절차를 거친다. 새롭게 제안한 고립파 추정방법들을 수리/수치파동수조의 조파에 적용하였다. 그 결과, 수리파동수조에서는 조파기의 위치정보신호를 추정할 수 있을 뿐만 아니라, 기존의 수리모형실험의 입력신호와 매우 유사한 것을 확인할 수 있었다. 수치파동수조에서는 파랑을 생성하기 위하여 고립파의 파형 및 유속을 적용하였다. 그리고 기존의 고립파 근사이론으로는 재현할 수 없었던 쓰나미의 파형을 조파할 수 있었고, 기존 실험결과와 높은 일치도를 나타내는 것을 확인할 수 있었다. 이로써 수리/수치파동수조에서 안정적인 쓰나미를 생성하기 위하여 제안한 두가지 추정방법의 타당성 및 유효성을 확인할 수 있었다.

Keywords

References

  1. Allsop, W., Chandler, I. and Zaccaria, M. (2014). "Improvements in the physical modelling of tsunamis and their effects." Proc. 5th Int. Conf. on the Application of Physical Modelling to Prot and Cosatal Protection, HRPP656.
  2. Boussinesq, J. (1872). "Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond." Journal de Mathématiques Pures et Appliquees, pp. 55-108 (in French).
  3. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  4. Brorsen, M. and Larsen, J. (1987). "Source generation of nonlinear gravity waves with the boundary integral equation method." Coastal Eng., Vol. 11, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  5. Dean, R. G. and Dalrymple, R. A. (1984). "Water wave mechanics for engineers and scientists." Prentice-Hall, Englewood Cliffs, New Jersey.
  6. Fenton, J. (1972). "A ninth-order solution for the solitary wave: Part2." J. Fluid Mech., Vol. 53, pp. 257-271. https://doi.org/10.1017/S002211207200014X
  7. Goring, D. G. (1978). "Tsunamis-the propagation of long waves onto a shelf." Rep. KH-R-38, California Institute of Technology.
  8. Grimshaw, R. (1971). "The solitary wave in water of variable depth: Part 2." J. Fluid Mech., Vol. 46, pp. 611-622. https://doi.org/10.1017/S0022112071000739
  9. Ha, T. M., Kim, H. J. and Cho, Y. S. (2010). "Numerical simulation of solitary wave run-up with an internal wave-maker of navierstokes equations model." J. Korea Water Resources Association, Vol. 43, No. 9, pp. 801-811 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.9.801
  10. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  11. Kim, D. H. and Lynett, P. J. (2011). "Dispersive and nonhydrostatic pressure effects at the front of surge." J. Hydraul. Eng. Vol. 137, No. 7, pp. 754-765. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000345
  12. Laitone, E. V. (1963). "Higher order approximation to nonlinear waves and the limiting heights of Cnoidal, Solitary and Stokes' waves." Beach Erosion Board, U.S. Department of the Army, Corps of Engineers, Technical Memorandum No. 133.
  13. Lee, J. W. and Cho, Y. S. (2013). "Run-up heights of solitary with a hydrodynamic pressure model." J. the Korean Society of Hazard Mitigation, Vol. 13, No. 1, pp. 347-352 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.1.347
  14. Lee, K. H., Kim, C. H., Jeong, S. H. and Kim, D. S. (2008). "Wave control by submerged breakwater under the solitary wave(tsunami) action." J. Korean Society of Civil Engineers, KSCE, Vol. 28, No. 3B, pp. 323-334 (in Korean).
  15. Lee, W. D. and Hur, D. S. (2014). "Development of 3-d hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Engineers, KSCE, Vol. 34, No. 3, pp. 859-871 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0859
  16. Lee, W. D., Hur, D. S. and Goo, N. H. (2014). "Numerical study on tsunami run-up height on impermeable/permeable slope." J. Korean Society of Coastal Disaster Prevention, Vol. 1, No. 1, pp. 1-9 (in Korean).
  17. Lee, W. D., Hur, D. S. and Jang, B. J. (2015). "A numerical simulation on delay time of tsunami propagation due to permeable submerged breakwater." J. Korean Society of Coastal Disaster Prevention, Vol. 2, No. 4, pp. 197-205 (in Korean).
  18. Liu, H., Sakashita, T. and Sato, S. (2014). "An experimental study on the tsunami boulder movement." Proc. 34th int. Conf. Coastal Eng., ASCE.
  19. McCowan, J. (1891). "On the solitary wave." London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Vol. 32, No. 5, pp. 45-58. https://doi.org/10.1080/14786449108621390
  20. Nouri, Y., Nistor, I. and Palermo, D. (2010). "Experimental investigation of tsunami impact on free standing structures." Coastal Eng. Journal, JSCE, Vol. 52, No. 1, pp. 43-70. https://doi.org/10.1142/S0578563410002117
  21. O'Donoghue, T., Pokrajac, D. and Hondebrink, L. J. (2010). "Laboratory and numerical study of dambreak-generated swash on impermeable slopes." Coastal Eng., Vol. 57, pp. 513-530. https://doi.org/10.1016/j.coastaleng.2009.12.007
  22. Ohyama, T. and Nadaoka, K. (1991). "Development of a numerical wave tank for analysis of non-linear and irregular wave field." Fluid Dynamics Research, Vol. 8, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  23. Park, H. S., Cox, T. D., Lynett, P. J., Wiebe, D. M. and Shin, S. W. (2013). "Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux." Coastal Eng., Vol. 79, pp. 9-21. https://doi.org/10.1016/j.coastaleng.2013.04.002
  24. Rossetto, T., Allsop, W., Charvet, I. and Robinson, D. (2011). "Physical modelling of tsunami using a new pneumatic wave generator." Coastal Eng., Vol. 58, pp. 517-527. https://doi.org/10.1016/j.coastaleng.2011.01.012
  25. Scott Russell, J. (1844). "On waves." Reports to the British Association, pp. 311-390.
  26. St-Germain, P., Nistor, I., Townsend, R. and Shibayama, T. (2014). "Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores." J. Waterway, Port, Coastal, Ocean Eng., ASCE, Vol. 140, No. 1, pp. 66-81. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000225