Browse > Article

The Influence of K-ratio and Seepage Velocity on Piping Occurrence  

Huh, Kyung-Han (초당대학교 건설정보공학과)
Chang, Ock-Sung (한국해외기술공사)
Publication Information
Journal of the Korean Society of Hazard Mitigation / v.8, no.2, 2008 , pp. 129-138 More about this Journal
Abstract
In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.
Keywords
Hydraulic Conductivity; Seepage Analysis; Critical Seepage Velocity Critical Hydraulic Gradient; Seepage Velocity; Exit Hydraulic Gradient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 의정부시 (1994) 홍복 저수지 확장 기본 및 실시 설계 보고서
2 정형식, 유재일, 안상로 (1989) 토질 제체의 Piping 파괴에 대한 실험적 연구. 대한토질공학회논문집, 대한토질공학회, 제5권, 제4호, pp. 17-26
3 한성길, 김상규 (1992) 침투유속에 의한 제방의 파이 핑 해석, 사례연구, 석사학위논문, 동국대학교
4 Kovacs, G.(1981) Seepage Hydraulics. Elsevier Scientific Publishing Company, Amsterdam.Oxford.NewYork, pp. 351-362
5 杉井俊夫, 佐藤健, 宇野尙雄, 山田謹吾(1989) Process of Seepage Failure and Effect of Heterogeneity in Soil. 土と基楚, JSSMFE, Vol. 37, No. 6, pp. 17-22
6 Kovacs, G., Ujfaludi, L. (1982) Movement of Fine Grains in the Vicinity of Well Screens. Hydraulic Problems of Ground Water Drainage (International Association for Hydraulic Research) Donji Milanovac, 14-16 September, Yugoslavia
7 사단법인 한국수자원학회 (2003) 건설교통부 승인 댐 설계기준. pp. 198-200
8 Das, B.M.(1983) Advanced Soil Mechanics. McGraw-Hill Book Company, pp. 102-138
9 김원만 譯 수리 공식 집. 건우사, pp. 411-415
10 응용지질 주식회사, OYO Corporation (1987) 응용 지질년보. OYO Technical Report, No. 9
11 Terzaghi, K. (1943) Theoretical Soil Mechanics. John Wiley & Sons, pp. 406-409
12 윤정한, 안조범, 김진회 (2003) 유한 요소 모델을 이용한 필 댐 기초 지반 그라우트 커튼의 적정 심도 연구. 한국지반공학회 논문집, 한국지반공학회, Vol. 19, No. 10, pp. 9-22
13 김상규, 한성길, 이민형, 안상로(2001) 수위 변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가. 한국지반공학회 논문집, 한국지반공학회, 제17권 제6호, pp. 149-162
14 NAVFAC DM-7.1 (1982) Soil Mechanics. Design Manual 7.1, Department of the Navy, Naval Facilities Engineering Command, pp.7.1-259 - 7.1-308
15 Bolton, M.D. (1979) A Guide to Soil Mechanics. John Wiley & Sons, pp. 233-258
16 이대수 (1996) 수위가 변동하는 휠 댐의 안정 해석(I), 침투 류 해석을 중심으로. 한국지반공학회논문집, 한국지반공학회, 제12권, 제6호, pp. 65-78
17 Harr, M.E.(1962) Groundwater and Seepage. McGraw-Hill Book Company, pp. 20-26