• Title/Summary/Keyword: Hybrid films

Search Result 385, Processing Time 0.024 seconds

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films

  • Kim, Chang-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2333-2337
    • /
    • 2007
  • Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.

Characterizations of Flexible Clay-PVA Hybrid Films: Thermo-optical Properties, Morphology, and Gas Permeability (유연한 점토-폴리(비닐 알코올) 하이브리드 필름의 특성 연구: 열적.광학적 성질, 모폴로지, 및 가스 투과성)

  • Shin, Ji-Eun;Ham, Mi-Ran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.402-408
    • /
    • 2011
  • To improve $Na^+$-saponite(SPT) film flexibility, we prepared SPT hybrid clay films with various poly(vinyl alcohol) (PVA) concentrations(0~10 wt%) using the solution intercalation method. In this study, we investigated the thermo-optical properties, morphology, and gas permeability of the SPT hybrid films. We also examined the relationship between the film properties and PVA content using wide angle X-ray diffraction measurements(XRD), field emission scanning electron microscopy(FESEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermomechanical analysis(TMA), ultraviolet-visible(UV-vis) spectroscopy, and oxygen transmission rate($O_2$TR) testing. The properties of the clay hybrid films were strongly affected by PVA filler content. The presence of a small amount of PVA was sufficient to improve the flexibility of SPT hybrid films.

Characterization of Poly(vinyl alcohol) Nanocomposite Films with Various Clays (다양한 점토를 이용한 폴리(비닐 알코올) 나노 복합체 필름의 특성 연구)

  • Ham, Miran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Poly(vinyl alcohol) (PVA) hybrid films containing 5 wt% pristine clay mineral were synthesized in the water solution. The various PVA hybrid films were synthesized from structurally different pristine clays: saponite (SPT), montmorillonite (MMT), hectorite (SWN), hydrophilic bentonite (PGV), and mica (Mica). The thermo-optical properties and morphologies of the PVA hybrid films were evaluated with various pristine clays. The nanostructure of the hybrid films was observed using transmission electron microscopy, which showed that the clay layers were well dispersed into the matrix polymer, although some clusters or agglomerated particles were also detected. The addition of pristine clay was more effective with regard to improving the thermal properties and gas barrier characteristics, whereas the optical transparency of the PVA hybrid films deteriorated with pristine clay.

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.

Enhancement of Oxygen and Moisture Permeability with Illite-Containing Polyethylene Film

  • Seong, Dong Min;Lee, Hyesun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.601-605
    • /
    • 2019
  • This work reports the preparation of ceramic hybrid films with illite-polyethylene composites analyzed as a function of concentration of added illite in polyethylene. The enhancement of oxygen and water-vapor transmission rate of illite-polyethylene film was evaluated to determine its influence on the freshness in fruit packaging. Particle size of illite materials was controlled in the range of 1~10 ㎛ and then mixed with LDPE to form the masterbatch. Ceramic hybrid films were prepared through a blown film making process. To determine the dispersity and abundancy of illite materials in the polyethylene matrix, various characterizations of illite-PE hybrid masterbatch and films were performed using SEM, TGA, and FT-IR. The oxygen and water-vapor transmission rate of illite-polyethylene film was found to be two times higher than that of LDPE film.

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Preparation and Properties of Polyimides Having Highly Flexible Linkages and Their Nanocomposites with Organoclays

  • Cho, Young-Ho;Park, Jong-Min;Park, Yun-Heum
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • A highly flexible polyimide (PI) was synthesized successfully from ethylene glycol bis(anhydrotrimellitate) (TMEG) and 1,3-bis(4-aminophenoxy)benzene (TPER) for its application in electronics. To enhance the thermal stability and mechanical properties of this novel PI, we prepared PI nanocomposite films using nanoparticles of clays that had been treated with organic intercalating agents (organoclays). We used two types of organoclays: montmo-rillonite (MMT) treated with hexadecylamine (C$\_$16/) and MMT treated with dimethyl dihydrogenated tallow quaternary ammonium (l5A). PI/organoclay hybrid films were obtained by first preparing poly(amic acid) (PAA)/organoclay films and then converting the PAA to polyimide by thermal conversion. PAA was characterized by FT-IR and $^1$H-NMR spectroscopy and the conversion of PAA to PI was confirmed by FT-IR spectroscopy. We analyzed the dispersion of the organoclays in the PI film by X-ray diffraction. The thermal stability and mechanical properties of the hybrid films were also investigated.

Effect of Heat Treatment on the Morphology and Transparency of Thick Inorganic-Organic Hybrid Films Prepared by the Electrophoretic Sol-Gel Deposition of Polyphenylsilsesquioxane Particles

  • Hasegawa, Koichi;Katagiri, Kiyofumi;Matsuda, Astunori;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2000
  • Thick inorganic-organic hybrid films were prepared on ITO-coated glass substrates by the electrophoretic sol-gel deposition of polyphenylsilsesquioxane particles. The morphology of the deposited films changed from the aggregate of the spherical particles to monolith by heat treatment at temperatures higher than $200^{\circ}C$. Transparency of the films was significantly improved accompanied by the morphological change of the particles. The degree of the morphological change was governed by two factors; maximum heat treatment temperature and heating rate. Transparent thick films of ca. 3$\mu\textrm{m}$ in thickness were obtained only by heat treatment at $400^{\circ}C$ for 2h with rapid heating from room temperature to $400^{\circ}C$. These films obtained were strongly adhered to the ITO-coated glass substrates and has a very smooth surface.

  • PDF

Transparent Sol-Gel Hybrid Dielectric Material Coatings for Low k Passivation Layer

  • Yang, Seung-Cheol;Oh, Ji-Hoon;Kwak, Seung-Yeon;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1453-1456
    • /
    • 2009
  • Transparent sol-gel hybrid dielectric material (hybrimer) coating films were fabricated by spin coating and photo or thermal curing of sol-gel derived oligosiloxane resins. Hybrimer coating films are suitable as the passivation layer of TFT in AMLCD due to low dielectric constant, small loss tangent, low leakage current density, high transmittance and thermal stability.

  • PDF

Colloidally stable organic-inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film

  • Kim, Nahae;Li, Xinlin;Kim, Se Hyun;Kim, Juyoung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.209-219
    • /
    • 2018
  • Colloidally stable organic-inorganic (O-I) hybrid nanoparticles could be prepared using an alkoxysilanefunctionalized amphiphilic polymer (AFAP) precursor. O-I hybrid sols could maintain colloidal stability for six months even at 45% solid content and be coated onto glass as well as PET film to form transparent O-I hybrid films. The formation of O-I hybrid nanoparticles dispersed in cured coating films could be confirmed using scanning electron microscopy. The cured coating film showed 3H and 5H pencil hardness on PET and glass, respectively. Nanoindentation measurements also showed that their modulus and hardness was varied with the type of AFAP used in its preparation.