Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.12.2333

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films  

Kim, Chang-Sik (Department of Chemistry, Chonnam National University)
Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
Publication Information
Abstract
Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.
Keywords
Nanoporous; $TiO_2$; $ZrO_2$; Thin film; Band gap;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Diebold, U. Surf. Sci. Rep. 2003, 48, 53   DOI   ScienceOn
2 Aguilar-Frutis, M.; Reyna-Garcia, G.; Garcia-Hipolito, M.; Gyzman- Mendoza, J. J. Vac. Sci. Technol. A 2004, 22, 1319   DOI   ScienceOn
3 Chrysicopoulou, P.; Davazoglou, D.; Trapalis, Chr.; Kordas, G. Thin Solid Films 1998, 323, 188   DOI   ScienceOn
4 Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69   DOI   ScienceOn
5 Smirnova, N.; Gnatyuk, Y.; Eremenko, A.; Kolbasov, G.; Vorobetz, V.; Kolbasova, I.; Linyucheva, O. Int. J. Photoenergy 2006, article ID 85469, pages 1-6
6 Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001, 89, 5243   DOI   ScienceOn
7 Kim, S. K.; Kim, W. D.; Kim, K. M.; Hwang, C. S.; Jeong, J. Appl. Phys. Lett. 2004, 85, 4112   DOI   ScienceOn
8 Wang, C. W.; Chen, S. F.; Chen, G. T. J. Appl. Phys. 2002, 91, 9198   DOI   ScienceOn
9 Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv. Mater. 2005, 17, 1705   DOI   ScienceOn
10 Tang, J.; Fabbri, J.; Robinson, R. D.; Zhu, Y.; Herman, I. P.; Steigerwald, M. L.; Brus, L. E. Chem. Mater. 2004, 16, 1336   DOI   ScienceOn
11 Barlage, D.; Arghavani, R.; Dewey, G.; Doczy, M.; Doyle, B.; Kavalieros, J.; Murthy, A.; Roberds, B.; Stokley, P.; Chau, R. International Electron Devices Meeting, Technical Digest; 2001; pp 10.6.1-10.6.4
12 Kim, D. J.; Hahn, S. H.; Oh, S. H.; Kim, E. J. Mater. Lett. 2002, 57, 355-360   DOI   ScienceOn
13 Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater. 2002, 14, 3284   DOI   ScienceOn
14 Lien, S. Y.; Wuu, D. S.; Yeh, W. C.; Liu, J. C. Solar Energy Materials and Solar Cells 2006, 90, 2710-2719   DOI   ScienceOn
15 Yim, J. H.; Baklanov, M. R.; Gidley, D. W.; Peng, H.; Jeong, H. D.; Pu, L. S. J. Phys. Chem. B 2004, 108, 8953   DOI   ScienceOn
16 Zhu, L. Q.; Fang, Q.; He, G.; Liu, M.; Zhang, L. D. J. Phys. D: Appl. Phys. 2006, 39, 5285   DOI   ScienceOn
17 Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214   DOI   ScienceOn
18 Chi, S. Y.; Marmak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Funct. Mater. 2004, 14, 335   DOI   ScienceOn
19 Okuya, M.; Nakade, K.; Kaneko, S. Solar Energy Materials and Solar Cells 2002, 70, 425   DOI   ScienceOn
20 Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Grazel, M. Nano Lett. 2005, 5, 1789   DOI   ScienceOn