• Title/Summary/Keyword: Hybrid Rocket Combustion

Search Result 124, Processing Time 0.022 seconds

Combustion Characteristics of Multi-port Hybrid Rocket (Multi-port 하이브리드 로켓의 연소 특성)

  • Kim, Soo-Jong;Min, Moon-Ki;Cho, Sung-Bong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.256-259
    • /
    • 2007
  • In this paper, the combustion characteristics of hybrid rocket were studied with various port number of the cylindrical multi-port grain. For the regression rate case, as the port number increases, the both port regression rate and end-surface regression rate tend to increase. For the performance parameter case, as the port number increases, the O/F ratio tends to decreases and the specific impulse tends to increase.

  • PDF

Effect of Diaphragm Thickness on Regression Rate Improvement in Hybrid Rocket Motor (다이아프램 두께 변화에 따른 하이브리드 로켓의 후퇴율 향상에 관한 연구)

  • Ryu, Sung-Hoon;Oh, Ji-Sung;Moon, Keun-Hwan;Kim, Hak-Chul;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • In this work, a study was conducted to investigate the effect of diaphragm thickness on the regression rate of the hybrid rocket motor. To observe the flow pattern and the recirculation zone, visualizations of combustion chambers with different diaphragm thickness (5mm, 10mm) were performed. It was found that the case with 5 mm thickness had a larger recirculation zone and therefore, had a higher regression rate than the case with 10mm thickness due to the increased residence time and heat transfer toward the fuel surface. Finally, it was concluded that the thickness of diaphragm can be a critical parameter for the enhancement of the regression rate.

Combustion Characteristics of the Paraffin-Based Hybrid Rocket Fuel (파라핀계 하이브리드 로켓 연료의 연소 특성)

  • Kim, Soo-Jong;Cho, Jung-Tae;Kim, Gi-Hun;Kim, Hak-Chul;Woo, Kyong-Jin;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.225-228
    • /
    • 2009
  • Combustion characteristics of the paraffin-based hybrid rocket fuel were compared with HDPE fuel. Regression rate of the pure paraffin wax was increased 12.1 times, but characteristic velocity was lower than HDPE. In case of paraffin fuel with 10%wt LDPE, regression rate was lower than pure paraffin wax, but regression rate compare with HDPE was increased 3.5 times and characteristic velocity was increased. According to these results, it was confirmed that blending of polymeric fuel improves combustion efficiency.

  • PDF

Study of Thrust Control Performance Improvement for Hybrid Rocket Applications (하이브리드 로켓의 추력제어 성능 향상에 관한 연구)

  • Choi, Jae-Sung;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • In this study, we tried to improve the thrust control performance through the thrust control combustion experiment of the hybrid rocket. We constructed the system which controls the oxidizer flow by combining a needle valve with a stepping motor and controlling the stepping motor drive according to the thrust control command order. Gas oxygen was used as the oxidizer for two different propellants, PE(Polyethylene), PC(Polycarbonate), respectively. To improve the slow response time and the oscillation phenomenon in the beginning stage of the thrust control combustion experiment, we measured and analyzed the change of the flow speed of the propellant pipe. The revised thrust control combustion experiment showed that the thrust was stably controlled with the margin or error from the thrust command within ${\pm}1$ N.

A Study on Combustion Characteristic with the Variation of Oxidizer phase in Hybrid Rocket Motor using PE/$N_2O$ (PE/$N_2O$ 하이브리드 로켓에서의 산화제 상 변화에 따른 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Gi-Hun;Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • The purpose of this paper is to study combustion characteristics with the different phase of oxidizer in hybrid rocket combustion. HDPE(High Density Polyethylene) as fuel and $GN_2O$(Gas $N_2O$), $LN_2O$(Liquid $N_2O$) as oxidizer were used to perform the experiments. An investigation was performed for a change of the regression rate, pressure of combustion chamber and combustion efficiency according to the variation of oxidizer phase. In case of using $LN_2O$ as oxidizer, the regression rate is not significantly different from using $GN_2O$ as oxidizer. It is considered that combustion energy is much larger than latent heat energy which was used in the evaporation of liquid oxidizer. However propulsion performance efficiency for $LN_2O$ showed lower value than for $GN_2O$. By increasing the flow rate of liquid oxidizer, heat transfer needed for vaporization of liquid oxidizer was increased, which resulted in the growth of combustion instability.

A Study on Structural Safety of the Solid Fuel Grain by Hot Flow inside a Hybrid Rocket Combustor (Multi-port 하이브리드 로켓 연소기에서 고온 산화제 유동에 의한 고체연료의 구조적 안전성에 대한 연구)

  • Do, Gyu-Sung;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes the structural safety of solid fuel in the Hybrid Rocket Motor (HRM). Hybrid rocket combustion has the distinct regression characteristics which include the process of thermal pyrolysis and fuel vaporization. Most of all, this regression characteristics would structurally affect the strength of the fuel having a multi-port configuration, and even may cause the breaking from the fuel grain. This problem would probably influence the performance and operating safety of HRM. Therefore, for the safe operation of HRM, the critical port radius which determines the structurally safe region was discussed from the heat analysis of the solid fuel.

  • PDF

A Study on the Performance Characteristics of the Hybrid Rocket with Blowdown Oxidizer Feeding System (블로우다운 산화제 공급방식을 적용한 하이브리드 추진 시스템의 성능특성에 관한 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.248-251
    • /
    • 2007
  • The blowdown oxidizer feeding system is effective in the respect of higher reliability by the small number of parts and the absence of additional pressurization tanks, but it also has the unfavorable disadvantage such as thrust variation during the operation. Thus, in order to understand the these performance characteristics inherent in the Hybrid Rocket Motor (HRM) with blowdown oxidizer feeding system, this study proposed the integrated mathematical model to describe physical phenomena in the following parts: the oxidizer tank, combustion chamber, fuel grain, nozzle and injector.

  • PDF

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

High Frequency Oscillations and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소실험에서의 고주파수 진동과 저주파수 연소불안정)

  • Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1021-1027
    • /
    • 2018
  • Experimental studies have been conducted to verify that the positive coupling between pressure oscillation (p') and combustion oscillation (q') of high frequency range is a prerequisite for the initiation of low frequency instability in hybrid rocket combustion. The post-chamber length and combustion equivalence ratio were selected as critical parameters to control the phase difference between p' and q', and p' amplitude in relation to the suppression of LFI. In the results, even if the post-chamber length increases, the phase difference between p' and q' maintains below pi/2, which is a necessary condition for the LFI development, but the amplification of RI (Rayleigh index) was substantially decreased leading to a stable combustion. In addition, results confirmed that combustion stability is achieved by changing the momentary equivalence ratio and/or by suppressing the positive coupling status of p' and q'. Thus, the periodic amplification of RI was identified as the middle path of the mechanism of occurrence of LFI.