• Title/Summary/Keyword: Hybrid Production System

Search Result 231, Processing Time 0.023 seconds

Design of a Rule-Based Solution Based on MFC for Inspection of the Hybrid Electronic Circuit Board (MFC 기반 하이브리드 전자보오드 검사를 위한 규칙기반 솔루션 설계)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.531-538
    • /
    • 2005
  • This paper proposes an expert system which is able to enhance the accuracy and productivity by determining the test strategy based on heuristic rules for test of the hybrid electronic circuit board producted massively in production line. The test heuristic rules are obtained from test system designer, test experts and experimental results. The guarding method separating the tested device with circumference circuit of the device is adopted to enhance the accuracy of measurements in the test of analog devices. This guarding method can reduce the error occurring due to the voltage drop in both the signal input line and the measuring line by utilizing heuristic rules considering the device impedance and the parallel impedance. Also, PSA(Parallel Signature Analysis) technique Is applied for test of the digital devices and circuits. In the PSA technique, the real-time test of the high integrated device is possible by minimizing the test time forcing n bit output stream from the tested device to LFSR continuously. It is implemented in Visual C++ computer language for the purpose of the implementation of the inference engine using the dynamic memory allocation technique, the interface with the electronic circuit database and the hardware direct control. Finally, the effectiveness of the builded expert system is proved by simulating the several faults occurring in the mounting process the electronic devices to the surface of PCB for a typical hybrid electronic board and by identifying the results.

A study on optimal of block facility layout using Hybrid GA (Hybrid GA를 이용한 최적의 블록단위 설비배치에 관한 연구)

  • 이용욱;석상문;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.131-142
    • /
    • 2000
  • Facility layout is the early stage of system design that requires a mid-term or long-term plan. Since improper facility layout might incur substantial logistics cost including material handling and re-installment costs, due consideration must be given to decisions on facility layout. Facility layout is concerned with low to arrange equipment necessary for production in a given space. Its objective is to minimize the sum of all the products of each equipment's amount of flow multiplied by distance. Facility layout also is related to the issue of NP-complete, i.e., calculated amounts exponentially increase with the increase of the number of equipment. This study discusses Hybrid GA developed, as an algorithm for facility layout, to solve the above-mentioned problems. The algorithm, which is designed to efficiently place equipment, automatically produces a horizontal passageway by the block, if a designer provides the width and length of the space to be handled. In addition, this study demonstrates the validity of the Algorithm by comparing with existing algorithms that have been developed. We present a Hybrid GA approach to the facility layout problem that improves on existing work in terms of solution quality and method. Experimental results show that the proposed algorithm is able to produce better solution quality and more practical layouts than the ones obtained by applying existing algorithms.

  • PDF

Characteristics of Surface Roughness According to Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (III) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (III))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Recently, high-efficiency machining in the production of high-value products with complex shapes has constantly been required along with the need for hybrid machining. In this study, in addition to wire-cut Electric Discharge Machining (EDM) and vibration, we present the possibility of a hybrid process by carrying out an experiment with aluminum alloy, and the hybrid process determines the nature of the surface. The selected experimental parameters are waveform, amplitude, peak current, and two-dimensional (2D) vibration. The experimental results give the guideline for selecting reasonable machining parameters. The surface roughness was improved about 20% with increases in the amplitude of the vibration.

Joint Production and Disposal Decisions for Sustainable Operations of the Hybrid Production System (혼성 생산 시스템의 지속 가능 운영을 위한 신제품 생산과 회수제품 수용 통제의 통합 구현)

  • Kim, Eungab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.440-449
    • /
    • 2013
  • We consider a reverse supply chain with a production facility and a recovery facility, and address the joint control of production and disposal decisions for sustainable operations. Demands are satisfied from on-hand inventory of serviceable products, replenished via manufacturing or remanufacturing. Sold products may be returned after usage and each returned product is disposed of or accepted for recovery. Accepted returned products are converted into serviceable products after remanufacturing process. Formulating the model as a Markov decision process, we characterized the structure of the optimal production and disposal policy as two monotone switching curves under a special condition. Three types of heuristic policies are presented and their performance is numerically compared.

A Study on the Synergistic Effects of Hybrid System Simultaneously Irradiating the UV and US (자외선과 초음파를 동시에 조사하는 연계 공정의 시너지 효과에 관한 연구)

  • Lee, Hanuk;Han, Jonghun;Yoon, Yeomin;Lee, Jongyeol;Park, Jaewoo;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.5-11
    • /
    • 2014
  • Both ultraviolet (UV) and ultrasound (US) systems are used in degrading of organic contaminants and they can thus be applicable simultaneously as an UV/US hybrid system in attempts further to increase the degradation efficiency. The pseudo-first order degradation rate constants with the UV, US and UV/US hybrid irradiation were 2.60, 10.34, and $14.81{\times}10^{-3}min^{-1}$, respectively. It was observed that the synergistic effect of UV/US hybrid system for degrading the bis (2-ethylhexyl) phthalate (DEHP). The highest rate of DEHP degradation was found during UV/US hybrid irradiation and the synergistic effect factor (SEF) was calculated to be 1.15 based on the pseudo-first order degradation rate constants. Results indicate that synergistic effect of UV/US hybrid system is closely correlated to the enhancement of sonochemical reactivity with the UV-US interaction of increasing the formation rate of OHby providing additional $H_2O_2$ production through the pyrolysis of water molecules during UV/US hybrid irradiation.

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

An Experimental Study on the Operating Characteristics with HVAC Type of Shopping Center in Underground Passage (지하도상가의 HVAC 구성방식에 따른 운전특성 연구)

  • Lee, Hong-Cheol;Hwang, In-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.76-81
    • /
    • 2007
  • The shopping center in underground passage increased for efficient space utilization in urban area. This study describes operation characteristics of all air type and hybrid type with local ventilation and fan coil unit fixed to ceiling. In order to compare energy saving, thermal environment and installation space, etc., integrated simulator with heat production and indoor distribution system is designed and constructed. Energy saving of the hybrid system is calculated as over 30% compared to conventional all air type. And also the results showed that humidity decreased about 6%, also indoor thermal distribution is improved as temperature variation of around $1^{\circ}C$.

  • PDF

Quantum Coherent Dissociation in a Hybrid Atom-light System with Photon Loss

  • Xiaoyang Yuan;Jialu Yin;Jiahao Xu;Yixiao Huang;Zhengda Hu
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.105-111
    • /
    • 2024
  • We investigate the effect of photon loss on pair production in a hybrid atom-light system. The loss of light field not only affects the generation of photons, but also prevents the generation of atomic collective excitation, although the atoms are not influenced directly. We propose an unbalanced homodyne detection of the number of atomic collective excitation that overcomes the challenge caused by counting uncertainty in practical measurement. In discussion, we show that the intermode correlations and the number correlation is closely related to the initial input state, while the quadrature correlations are independent of the initial state and always exhibit opposite intermode correlations even in the presence of loss.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

A study on development of large area/mass production system for flexible solar cell (유연태양전지 대면적/대량 생산시스템 개발에 관한 연구)

  • Bae, Sungwoo;Jo, Jeongdai;Kim, Dongsoo;Yoo, Seongyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Currently, new and renewable energy come into the spotlight, such as solar energy, wind power, fuel cell, hybrid car etc., due to the energy resource is being depleted. Especially, in order to solve like this problem, the study of solar cell manufacturing systems are being extensively researched such as vacuum process. But the major fault of the vacuum process are its expensive production price. On the order hand, Roll-to-roll printing system, the new technology of solar cell manufacturing, has low production price compare with the vacuum process. Also roll-to-roll printing system can decrease the 95% of waste water and 99.9% of harmful gasses than the vacuum process. So we addressed the roll to roll printing system for the flexible solar cell by using printing technology. This roll-to-roll printing system is comprised of various modules, such as web handling module, fine pattern printing module, dry/curing module, uniform coating module and laminating module etc.

  • PDF