• Title/Summary/Keyword: Hybrid Catalyst

Search Result 120, Processing Time 0.027 seconds

Crystal Structure Dependence for Reactivities of B12-TiO2 Hybrid Catalysts with Anatase and Rutile Forms

  • Shimakoshi, Hisashi;Nagami, Yoko;Hisaeda, Yoshio
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.9-11
    • /
    • 2015
  • The debromination of phenethyl bromide by the $B_{12}-TiO_2$ hybrid catalyst under UV light irradiation was investigated. The catalytic efficiency was dependent on the type of $TiO_2$. The anatase form of $TiO_2$ was superior to the rutile form of $TiO_2$. The selectivity of the product was also dependent on the crystal structure of $TiO_2$, and the rutile form of $TiO_2$ showed a high selectivity for the formation of the coupling product, 2,3-diphenylbutane, when compared to that of the anatase form of $TiO_2$.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition (과산화수소 촉매 분해를 이용한 파라핀 및 PE 하이브리드 로켓의 자연 점화 특성)

  • An, Sung-Yong;Jin, Jung-Kun;Jung, Eun-Sang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • The auto-ignition tests of hybrid rockets with the concentrated hydrogen peroxide as an oxidizer were presented. Auto-ignition was successfully demonstrated by injecting decomposed gases from $H_2O_2$ into paraffin or polyethylene fuels. In addition, restart and instant ignition were realized with this rocket. For stable combustion, a higher $L^*$ value was required for the paraffin combustion compared with PE. On the other hand, much faster response time was demonstrated in case of a paraffin, which was 13 and 30 ms at ignition delay and rise time respectively.

Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition (과산화수소 촉매 분해를 이용한 하이브리드 로켓 자연 점화)

  • An, Sung-Yong;Jin, Jung-Kun;Jung, Eun-Sang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.499-502
    • /
    • 2009
  • The auto-ignition tests of hybrid rockets with the concentrated hydrogen peroxide as an oxidizer were presented. Auto-ignition, restartability, and instant ignition were successfully demonstrated by injecting decomposed gases from $H_2O_2$ into paraffin or polyethylene fuels. In addition, much faster response time was demonstrated in case of a paraffin, which was 13 and 30 ms at ignition delay and rise time respectively.

  • PDF

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Cheol-Hong;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Free-standing Three Dimensional Graphene Incorporated with Gold Nanoparticles as Novel Binder-free Electrochemical Sensor for Enhanced Glucose Detection

  • Bui, Quoc Bao;Nguyen, Dang Mao;Nguyen, Thi Mai Loan;Lee, Ku Kwac;Kim, Hong Gun;Ko, Sang Cheol;Jeong, Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.229-237
    • /
    • 2018
  • The electrochemical sensing performance of metal-graphene hybrid based sensor may be significantly decreased due to the dissolution and aggregation of metal catalyst during operation. For the first time, we developed a novel large-area high quality three dimensional graphene foam-incorporated gold nanoparticles (3D-GF@Au) via chemical vapor deposition method and employed as free-standing electrocatalysis for non-enzymatic electrochemical glucose detection. 3D-GF@Au based sensor is capable to detect glucose with a wide linear detection range of $2.5{\mu}M$ to 11.6 mM, remarkable low detection limit of $1{\mu}M$, high selectivity, and good stability. This was resulted from enhanced electrochemical active sites and charge transfer possibility due to the stable and uniform distribution of Au NPs along with the enhanced interactions between Au and GF. The obtained results indicated that 3D-GF@Au hybrid can be expected as a high quality candidate for non-enzymatic glucose sensor application.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater (지하수 오염물질 처리를 위한 Full Scale PUV/US Hybrid System 연구)

  • Han, Jonghun;Park, Wonseok;Lee, Jongyeol;Heo, Jiyong;Her, Namguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.575-580
    • /
    • 2017
  • Chlorinated hydrocarbons (TCE and PCE), petroleum hydrocarbons (BTEX, PAHs, and TPH), and explosive compounds (TNT, RDX, and HMX) have been detected in underground water countrywide. The overall objective of this study is to evaluate sono-catalytic degradation coupled with the use of PUV in order to understand the fate and transport of a representative selection of non-biodegradable contaminants (i.e., TCE, PCE, BTEX, PAHs, TPH, TNT, RDX, and HMX) in groundwater. Both ultraviolet (UV) and ultrasound (US) systems are used in degrading of organic contaminants and they can thus be applicable simultaneously as an UV/US hybrid system in attempts further to increase the degradation efficiency. Results indicate that synergistic effect of UV/US hybrid system is closely correlated to the enhancement of sono-chemical reactivity with the UV-US interaction of increasing the formation rate of OH by providing additional $H_2O_2$ production through the pyrolysis of water molecules during UV/US hybrid irradiation.