DOI QR코드

DOI QR Code

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구

  • Published : 2001.04.01

Abstract

The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

Keywords

References

  1. Ralph, A., Dalla Betta and Thomas Rostrup-Nielsen, 1999, 'Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine,' Catalysis Today, Vol. 47, pp. 369-375 https://doi.org/10.1016/S0920-5861(98)00319-8
  2. 서용석, 박병식, 강성규, 1997, '저 NOx형 허니컴 촉매버너의 개발,' 대한기계학회논문집(B) 제21권, 제6호, pp. 822-829
  3. Jang Ben W.-L., Nelson R. M., Spivey James J., Ocal Meltem, Oukaci R. and Marceln George, 1999, 'Catalytic Oxidation of Methane over Hexaaluminates and Hexaaluminate-support- ed Pd Catalysts,' Catalytic Today, Vol. 47, pp. 103-113 https://doi.org/10.1016/S0920-5861(98)00288-0
  4. Kolaczkowski, S. T., 1995, 'Catalytic Stationary Gas Turbine Combustors,' Trans IChemE, Vol. 73, pp. 168-190
  5. 황철홍, 정영식, 이창언, 2000, '백금 촉매에 의해 안정화된 메탄의 연소 특성,' 제20회 KOSCO Symposium 논문집, pp. 152-161
  6. Groppi, G., Tronconi, E. and Forzatti, P., 1999, 'Mathematical Models of Catalytic Combustors,' Catal. Rev. Sci. Eng., Vol. 42, No. 2, pp. 227-254
  7. Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J. and Schmidt, L. D., 2000, 'A Critical Evaluation of Navier-Stocks, Boundary-Layer and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith,' Catalysis Today, Vol. 59, pp. 47-60 https://doi.org/10.1016/S0920-5861(00)00271-6
  8. Hickman, D. A. and Schmidt, L. D., 1993, 'Steps in $CH_4$Oxidation on Pt and Rh Surfaces : High-Temperature Reactor Simulations,' AlChE Journal, Vol. 39, No. 7, pp. 1164-1177 https://doi.org/10.1002/aic.690390708
  9. Deutschmann, O., Behrendt, F. and Wanatz, J., 1994, 'Modeling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil,' Catalysis Today, Vol. 21, pp. 461-470 https://doi.org/10.1016/0920-5861(94)80168-1
  10. Chou, C. P., Chen, J. Y., Evans, G. H. and Winters, W. S., 1999, 'Numerical Studies of Methane Catalytic Combustion Inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions,' Comb. Sci. Tech., in press https://doi.org/10.1080/00102200008952116
  11. Schlegel, A., Benz, P., Griffin, T., Weisentein, W. and Bockhorn, H., 1996, 'Catalytic Stabilization of Lean Premixed Combustion: Method for Improving NOx Emissions,' Combustion and Flame, Vol. 105, pp. 332-340 https://doi.org/10.1016/0010-2180(95)00211-1
  12. Schlegel, A., Buser, S. and Benz, P., 1994, 'NOx Formation in Lean Premixed Noncatalytic and Catalytically Stabilized Combustion of Propane,' 25th Symposium (Int.) on Combust., pp. 1019-1026
  13. Dalla Betta, R. A. and Loffler, D. G., 1996, 'Selectivity Considerations in Methane Catalytic Combustion,' ASC Symposium Series 638, pp. 36-47
  14. Bond, T. C., Noguchi, R. A., Chou, C., Mongia, R. K., Chen, J. and Dibble, R. W., 1996, 'Catalytic Oxidation of Natural Gas over Supported Platinum: Flow Reactor Experiments and Detailed Numerical Modeling,' 6th Symposium(Int.) on Combustion, pp. 1771-1778
  15. Coltrin, M. E., Moffat, H. K., Kee, R. J. and Rupley, F. M., 1993, 'CRESLAF(Ver 4.0),' Sandia Report SAND93-0478
  16. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, 'Chemkin-Ⅱ,' Sandia Report SAND89-8009B
  17. Coltrin, M. E., Kee, R. J. and Rupley, F. M., 1994, 'SURFACE CHEMKIN(Ver 4.0),' Sandia Report SAND90-8003C
  18. Kee, R. J., Dixon-Lewis, G., Wanatz, J., Coltrin, M. E. and Miller, J. A., 'A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,' 1994, Sandia Report SAND86-8246
  19. GRI Mech. Ver. 2.11, Available from www.gri.org
  20. Nishioka M., Nakagawa S., Ishikawa Y. and Takeno T., 1994, 'NO Emission Characteristics of Methane-Air Double Flame,' Combustion and Flame, Vol. 98, pp. 185-203 https://doi.org/10.1016/0010-2180(94)90203-8
  21. Griffin, T. A. and Pfefferle, L. D., 1990, 'Gas Phase and Catalytic Ignition of Methane and Ethane in Air over Platinum,' AlChE Journal, Vol. 36, pp. 861-870 https://doi.org/10.1002/aic.690360607
  22. Miller, J. A. and Bowman, C. T., 1989, 'Mechanism and Modeling of Nitrogen Chemistry in Combustion,' Prog. Energy Combust. Sci., Vol. 15, pp. 287-338 https://doi.org/10.1016/0360-1285(89)90017-8