Communications

Crystal Structure Dependence for Reactivities of B₁₂-TiO₂ Hybrid Catalysts with Anatase and Rutile Forms

Hisashi Shimakoshi,* Yoko Nagami, and Yoshio Hisaeda*

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan

ABSTRACT: The debromination of phenethyl bromide by the B_{12} -TiO₂ hybrid catalyst under UV light irradiation was investigated. The catalytic efficiency was dependent on the type of TiO₂. The anatase form of TiO₂ was superior to the rutile form of TiO₂. The selectivity of the product was also dependent on the crystal structure of TiO₂, and the rutile form of TiO₂ showed a high selectivity for the formation of the coupling product, 2,3-diphenylbutane, when compared to that of the anatase form of TiO₂.

The application of titanium oxide (TiO₂) has increased in various areas such as organic synthesis, solar cell devices, antibiotic and environmental applications, and surface selfcleaning due to its semiconductor property.¹⁻⁴ We recently reported the preparation and catalysis of TiO_2 combined with a cobalamin derivative (B₁₂), cyanoaqua cobyrinic acid, [(CN)(H₂O)Cob(III)7COOH]Cl.⁵⁻¹⁰ Naturally-occurring B₁₂(cobalamin)-dependent enzymes catalyze various molecular transformations that are of particular interest from the viewpoint of biological chemistry as well as synthetic organic chemistry and catalytic chemistry.¹¹⁻¹⁷ The B_{12} - TiO₂ hybrid catalyst also shows a unique catalysis for the dechlorination of organic halides,⁵⁻⁷ radical-mediated organic synthesis,^{8,9} alkene reduction and hydrogen evolution.¹⁰ It is well-known that TiO₂ particles generate electron-hole pairs under band gap excitation by UV light irradiation and the conductive band electron (e_{CB}) for TiO₂ has an E_{red} of -0.5 V and -0.3 V vs. NHE (in pH 7 aqueous solution) in the anatase and rutile, respectively.¹ In contrast, the redox potentials for the Co^{III}/Co^{II} and Co^{II}/Co^I couples of cobalamin derivatives are observed at around +0.2 and -0.3 vs. NHE in various media.¹⁸ Therefore, it was possible to generate the reactive Co^{I} species of B_{12} via electron transfer from TiO₂ by UV light irradiation, and we succeeded in performing various B₁₂ dependent reactions mediated by the supernucleophilic Co^I form of B₁₂. In previous studies, we mainly used P-25 TiO₂ (Japan Aerosil) which is a mixture of the anatase (80%) and rutile (20%) forms.⁵ We have now investigated a comparison of the anatase- and rutile- structured TiO₂ during the catalysis of the B₁₂-TiO₂ hybrid catalyst as shown in Figure 1. We found a crystal structure dependency for the catalysis of B₁₂-TiO₂ regarding the reaction efficiency and selectivity.

The B₁₂-TiO₂ hybrid catalyst was prepared by a previously reported method.⁵ The content of the B₁₂ complex on the surface of the anatase (A) TiO₂ (AMT-600, average surface area: 52 m²/g, TAYCA Co., Ltd.) was 1.75×10^{-5} mol/g and the apparent surface coverage by the B₁₂ complex was 3.4×10^{-11} mol/cm², while the B₁₂ complex content on the surface of the rutile TiO₂ (R) (TK-1005, average surface area: 52 m²/g, TAYCA Co., Ltd.) was 2.13×10^{-5} mol/g and the apparent surface coverage by the B₁₂ complex was 4.1×10^{-11} mol/cm².

*To whom correspondence should be addressed. E-mail: shimakoshi@mail.cstm.kyushu-u.ac.jp

Figure 1. Structure of B_{12} -TiO₂ hybrid catalyst. Photograph is of the rutile form of TiO₂ immobilized with the cobalamin derivative, cyanoaqua cobyrinic acid, [(CN)(H₂O)Cob(III)7COOH]⁺.

We initially examined the reductive formation of the Co^I species of B₁₂ on the surface of TiO₂ under UV light irradiation by diffuse reflectance (DR) UV-vis spectroscopy. Both B₁₂-TiO₂ hybrids (atanase and rutile forms) suspended in MeOH showed the typical DR UV-vis spectra for the Co^{I} state of B_{12} with a reflectance maxima at 390 nm and 570 nm after UV light irradiation as shown in Figures **2a** and **2b**, respectively. The Co^{II} complex having absorption maximum at 470 nm were transitionally formed during UV light irradiation as shown in Figure 2. The time for the Co^I formation was different in the anatase- and rutile- TiO2s. To complete the reaction, the anatase-type TiO_2 requires 50 seconds, while the rutile-type TiO_2 required 300 seconds. Therefore, the anatase TiO₂ was superior to the rutile TiO_2 for the formation of the Co^I species since the conduction band electron is more negative in the anatase TiO_2 ($E_{red} = -0.5$ V vs. NHE in pH 7 aqueous solution) than that of the rutile ($E_{red} = -0.3 \text{ V}$ vs. NHE in pH 7 aqueous solution). This is an advantage for the B_{12} catalytic reaction, which is mediated by the reactive Co¹ species.

To confirm the difference in TiO₂ using the catalysis of B_{12} - TiO₂, we carried out a catalytic reaction using two types of TiO₂s. For the catalytic reaction, 500 equivalent moles of phenethyl bromide $(3.0 \times 10^{-3} \text{ M})$ versus the B_{12} complex on the TiO₂ were dissolved in MeOH, and nitrogen gas was bubbled to remove the oxygen, then irradiated using black light (365 nm). After the photoreaction, the products were identified by GC-MS. The results are summarized in **Table 1**. 2,3-Diphenylbutane (mixture of racemi and meso) (DB) and ethylbenzene (EB) were obtained as products. Of course, the reaction did not proceed in the absence of B_{12} using bare TiO₂ (entries 5 and 6 in **Table 1**).

Figure 2. Diffuse reflectance (DR) UV-vis spectral change in B_{12} -TiO₂ during UV light irradiation in MeOH under N₂. (a) Using anatase TiO₂, and (b) rutile TiO₂.

Conversions of the substrate were 44 % (entry 1 in Table 1) and 57 % (entry 2 in **Table 1**) for B_{12} -TiO₂ (R) and B_{12} -TiO₂ (A), respectively. The high conversion of B₁₂- TiO₂(A) is probably due to the efficient formation of the reactive Co^{I} species by the anatase TiO_{2} . This behavior was consistent with the DR UV-vis change in Figure 2. The selectivity of the coupling product (DB) over the simply reduced product (EB) was 67 % and 38 % for B_{12} -TiO₂(R) and B_{12} -TiO₂ (A), respectively.¹⁹ When the B_{12} complex was not immobilized on TiO₂, but dissolved in the solution in which heptamethyl cobyrinate $\ensuremath{\text{perchlorate}}^{20}$ was used as the B_{12} complex, the coupling product (DB) was scarcely formed (entries 3 and 4 in Table 1). After the photoreaction, some amount of B12 was desorbed on the surface of \hat{B}_{12} and the desorption of B_{12} was 33 % in B_{12} -TiO₂ (R) (entry 1 in Table 1) and 68 % in B_{12} - TiO₂ (A) (entry 2 in Table 1). In other words, the B₁₂ was more stably immobilized on the surface of the rutile TiO2. Based on these results, we proposed the reaction mechanism as shown in Figure 3. The coupling product DB could be formed by B_{12} on the TiO₂, while EB was formed by B_{12} desorbed from TiO2. The coordination modes of the carboxylates on the anatase- and rutile- TiO_2 phases were revealed by confocal Raman microscopy.²¹ Such distinct coordination modes could affect the stability of the B12 complex immobilized by carboxylates anchor on the TiO₂ surface. The selective formation of DB in B_{12} -TiO₂ (R) (entry 1 in **Table 1**) may be caused by stability of B_{12} complex on TiO₂. Substrate radical derived from alkylated complex on TiO₂ (R) should be formed in close distance, which is favorable for coupling reaction to form DB. And it should be noted that difference of photocatalytic activity between anatase and rutile TiO2 is dependent on many factors not only band potential of TiO_2 but also crystallinity, particle size, surface morphology and so on.²²⁻²⁴ The difference for catalysis of B12 complex combined with anatase and rutile forms of

 TiO_2 also might be affected by other factors. Further study on $B_{12}\text{-}TiO_2$ catalysis is in progress in our laboratory.

Table 1. Reduction of phenethyl bromide catalyzed by B_{12} -TiO2under N2 at room temperature in MeOHa

			Products (Yield ^c /%)			Selectivity ^c	Desorption
Ent	ry Catalyst	Conversion ^b / %	DB		EB	/ %	of $B_{12}/\%$
			rasemi	meso			
1	B_{12} -Ti $O_2(R)^d$	44	12	12	12	67	33
2	B_{12} -Ti $O_2(A)d$	57	8	8	26	38	68
3	$\mathrm{B}_{12}, \mathrm{TiO}_2(\mathbf{R})^e$	10	0	0	11	0	
4	$\mathrm{B}_{12}, \mathrm{TiO}_2(\mathrm{A})^e$	28	1	1	24	7	
5	${\rm TiO}_2({\bf R})^f$	trace	-	-	trace	-	-
6	${\rm TiO}_2({\rm A})^f$	trace	-	-	trace	-	-

^{*a*} Condition: [substrate]= 3.0×10^{-3} M (1.0×10^{-4} mol), catalyst (B_{12} -Ti O_2)=8.5 mg (R) and 10.3 mg (A) (each B_{12} , 6.0×10^{-6} M), in 30 mL CH₃OH under N₂ at room temperature; reaction time=24 h.

^bConversions were estimated by the recovery of the substrate. Yields were based on initial concentration of the substrate.

^{*c*} Selectivity was calculated by {yield of DB/(yield of DB+yield of EB)}x100.

^{*d*} Immobilization amount of $B_{12}=2.13 \times 10^{-5}$ mol/g for TiO₂(R), 1.75×10⁻⁵ mol/g for TiO₂ (A). ^eCondition: [substrate]=3.0 ×10⁻³ M, Ti O₂ (10 mg), cyanoaqua heptamethyl cobyrinate, 0.22 mg (6.0×10⁻⁶ M), solvent 30 mL CH₃OH under N₂ at room temperature, reaction time=10 h. ^f Unmodified 10 mg of TiO₂ was used.

Figure 3. Plausible mechanism for selective formation of 2,3diphenylbutane catalyzed by B_{12} -TiO₂.

In conclusion, we have developed the B_{12} -TiO₂ hybrid catalyst for a light-induced catalytic reaction. The reaction efficiency was dependent on the reducing ability of TiO₂ caused by the conduction band level. The product selectivity was dependent on the stability of the B_{12} -TiO₂ composite. This crystal form dependence for the catalysis of TiO₂ is useful information for the design of hybrid catalysts. Research is in progress on further preparations of the TiO₂ hybrid catalyst with various metal complexes in our laboratory.

KEYWORDS: cobalamin, B12, TiO2, crystal form, anatase, rutile

Received March 2, 2015; Accepted March 10, 2015

ACKNOWLEDGEMENT

This study was partially supported by a Grant-in-Aid for Scientific

Research on Priority Areas (No. 20031021) and Innovative Areas (No. 25105744) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, a Grant-in-Aid for Scientific Research (C) (No.23550125) from the Japan Society for the Promotion of Science (JSPS), and the 2014 Tokuyama Science Foundation.

REFERENCES AND NOTES

- 1. Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341-357.
- Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69–96.
- 3. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol., C 2000, 1, 1–21.
- 4. Ohtani, B. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 157-178.
- Shimakoshi, H.; Sakumori, E.; Kaneko, K.; Hisaeda, Y. Chem. Lett. 2009, 38, 468–469.
- Shimakoshi, H.; Nishi, M.; Tanaka, A.; Chikama, K.; Hisaeda, Y. Chem. Lett. 2010, 39, 22-23.
- Shimakoshi, H.; Abiru, M.; Kuroiwa, K.; Kimizuka, N.; Watanabe, M.; Hisaeda, Y. *Bull. Chem. Soc. Jpn.* **2010**, *83*, 170– 172.
- Shimakoshi, H.; Abiru, M.; Izumi, S.; Hisaeda, Y. Chem. Commun. 2009, 6427-6429.
- Izumi, S.; Shimakoshi, H.; Hisaeda, Y. Dalton Trans. 2010, 39, 3302-3307.
- Shimakoshi, H.; Hisaeda, Y. ChemPlusChem 2014, 79, 1250-1253.
- Proinsias, K. ó; Giedyk, M.; Gryko, D. Chem. Soc. Rev. 2013, 42, 6605-6619.

- 12. Gruber, K.; Puffer, B.; Kraütler, B. Chem. Soc. Rev. 2011, 40, 4346-4363.
- Hisaeda, Y.; Shimakoshi, H. in *Handbook of Porphyrin Science*, Vol. 10 (Eds.: Kadish, K. M.; Smith, K. M.; Guilard R.), World Scientific Singapore, **2010**, 313-370.
- 14. Buckel, W.; Golding, B. T. Annun. Rev. Microbiol. 2006, 60, 7-49.
- 15. Brown, K. L. Chem. Rev. 2005, 105, 2075-2149.
- 16. Toraya, T. Chem. Rev. 2003, 103, 2095-2127.
- 17. Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72, 209-247.
- Murakami, Y.; Hisaeda, Y.; Kajihara, A.; Ohno, T. Bull. Chem. Soc. Jpn. 1984, 57, 405-411.
- 19. The difference of selectivity was somewhat dependent on UV light irradiation time, 50 % in anatase and 71 % in rutile in 1hr. However, the B_{12} complex was largely desorbed from TiO₂ (A) than TiO₂ (R) during photoreaction, the difference of selectivity was somewhat changed in 24 hr (38 % in anatase, 67 % in rutile as shown in **Table 1**).
- Murakami, Y.; Hisaeda, Y.; Kajihara, A. Bull. Chem. Soc. Jpn. 1983, 56, 3642-3647.
- Parussulp, A. L. A.; Bonacin, J. A.; Toma, S. H.; Araki, K.; Toma, H. E. *Langmuir*, **2009**, *25*, 11269-11271.
- A. Sclafani, J. M. Herrmann, J. Phys. Chem., 1996, 100, 13655-13661.
- T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, *Sci. Rep.*, **2014**, *4*, 4043-4050.
- 24. W. Kim, T. Tachikawa, G. Moon, T. Majima, W. Choi, *Angew. Chem. Int. Ed.* **2014**, *53*, 14036-14041.