• Title/Summary/Keyword: Human sensation

Search Result 296, Processing Time 0.025 seconds

Evaluation of Antifungal and Antibacterial Activity of Newly Developed Licorice Varieties

  • Kang, Sa-Haeng;Song, Young-Jae;Jeon, Yong-Deok;Soh, Ju-Ryun;Park, Jung-Hyang;Lee, Jeong-Hoon;Park, Chun-Geon;Jang, Jae-Ki;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.103-103
    • /
    • 2019
  • Glycyrrhizae radix, commonly known as licorice, is a perennial herb belonging to Leguminosae and also includes various components such as, glycyrrhizin, liquiritin, liquiritigenin and isoliquiritigenin etc. Licorice has been widely used in East Asia as a medicine having pharmacological effects like antioxidants, anti-bacterial, anti-inflammatory, anti-cancer and immune modulatory activities. Among various licorice, Glycyrrhiza (G.) uralensis G. glabra and G. inflata are used for pharmaceutical purposes in Korea. However, cultivation of licorice has some problems such as low quality, low productivity, and early leaf drop. Korea Rural Development Administration developed new cultivars Wongam and Sinwongam, which are improved in cultivation and quality. To register the newly developed cultivar (s) on Ministry of Food and Drug Safety in Korea as a medicine, it is necessary to prove the similarity and difference through the comparative studies between already-registered species and new cultivars. Some fungi and bacteria usually in the human oral cavity and intestines exist as harmless state in human body. Also, the skin and genital infections by fungi can lead to toxic systemic infections and are accompanied by flushing, rashes, burning or painful sensation. The influences of licorice varieties on fungi and bacteria might be an evidence to prove the outstanding effect of newly developed licorice variety. In this study, the antifungal and antibacterial activity was investigated using newly developed licorice varieties Wongam, and Sinwongam against various fungi and bacteria. These results means newly developed licorice could be used as a replacement of already-registered species in terms of antifungal and antibacterial application.

  • PDF

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do (Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.227-237
    • /
    • 2020
  • Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

Effect of occlusal balance on center of gravity in body (교합균형이 자세 중심(重心)에 미치는 영향에 관한 연구)

  • Lee, Yun;Choi, Dae-Kyun;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.57-67
    • /
    • 2003
  • Suppose that dental occlusion is related to body posture. We want to find out that improving occlusal balance may affect vibration and distribution of C.O.P. in which way, by measuring change of posture and center of gravity (center of pressure, C.O.P.) which plays important role in measuring balance sensation. Total 11 students at Kyung Hee dental college students, 4 females and 9 males (age: 23-30) participated in this test, who have normal occlusion (Angle's classification I), no TMJ problems. All of the participants have no tooth loss except 3rd molar, no prosthesis over single tooth restoration, no orthopedic problems which affect balance sensation, and no otorhinolaryngological problems. First, we registrated bite by centric relation, and then fabricated stabilization splint that is increased 3.5mm vertical dimension around premolar region. By F-scan (Tekscan Inc., Boston, Mass), we measured discrepancy of average contact pressure of left and right foot. And we also measured discrepancy of vibration of C.O.P(center of pressure). before setting stabilization splint and after wearing stabilization splint at intervals of 1 week, 2 weeks, 3 weeks after. In normal human beings, improved occlusal balance by stabilization splint leads to decrease of vibration of C.O.P. (P<0.05). One week after wearing stabilization splint, vibration of C.O.P. decreased reliably (P<0.05), two weeks after wearing stabilization splint, vibration of C.O.P. decreased similarly comparing to before wearing and one week after wearing. (P<0.05) After two weeks and three weeks, however, it was hard to find reliability. (P>0.05) Difference between average contact pressure of right and left foot also decreased. (P<0.05) We could find decrease after one week of wearing stabilization splint (P<0.05) and two weeks after, the decrease was more reliable than one week after. (P<0.05) After two weeks and three weeks, however, it was hard to find reliability. Improvement of occlusal balance leads to decrease of vibration of C.O.P. and decrease of difference between right and left average contact pressure.

Evaluation of the Wet Bulb Globe Temperature (WBGT) Index for Digital Fashion Application in Outdoor Environments

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-36
    • /
    • 2017
  • Objective: This paper presents a study to evaluate the WBGT index for assessing the effects of a wide range of outdoor weather conditions on human responses. Background: The Wet Bulb Globe Temperature (WBGT) index was firstly developed for the assessment of hot outdoor conditions. It is a recognised index that is used world-wide. It may be useful over a range of outdoor conditions and not just for hot climates. Method: Four group experiments, involving people performing a light stepping activity, were conducted to determine human responses to outside conditions in the U.K. They were conducted in September 2007 (autumn), December 2007 (winter), March 2008 (spring) and June 2008 (summer). Environmental measurements included WBGT, air temperature, radiant temperature (including solar load), humidity and wind speed all measured at 1.2m above the ground, as well as weather data measured by a standard weather station at 3m to 4m above the ground. Participants' physiological and subjective responses were measured. When the overall results of the four seasons are considered, WBGT provided a strong prediction of physiological responses as well as subjective responses if aural temperature, heart rate and sweat production were measured. Results: WBGT is appropriate to predict thermal strain on a large group of ordinary people in moderate conditions. Consideration should be given to include the WBGT index in warning systems for a wide range of weather conditions. However, the WBGT overestimated physiological responses of subjects. In addition, tenfold Borg's RPE was significantly different with heart rate measured for the four conditions except autumn (p<0.05). Physiological and subjective responses over 60 minutes consistently showed a similar tendency in the relationships with the $WBGT_{head}$ and $WBGT_{abdomen}$. Conclusion: It was found that either $WBGT_{head}$ or $WBGT_{abdomen}$ could be measured if a measurement should be conducted at only one height. The relationship between the WBGT values and weather station data was also investigated. There was a significant relationship between WBGT values at the position of a person and weather station data. For UK daytime weather conditions ranging from an average air temperature of $6^{\circ}C$ to $21^{\circ}C$ with mean radiant temperatures of up to $57^{\circ}C$, the WBGT index could be used as a simple thermal index to indicate the effects of weather on people. Application: The result of evaluation of WBGT might help to develop the smart clothing for workers in industrial sites and improve the work environment in terms of considering workers' wellness.

Influence of Playground Land Covers on the Human Thermal Sensation (운동장 포장재료가 인간 열환경에 미치는 영향)

  • Hyun, Cheolji;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.12-21
    • /
    • 2019
  • In order to investigate the effect of various pavement materials (artificial grass, natural grass, and clay sand) on the human thermal environment, the microclimate data in early autumn (air temperature, humidity, wind speed, and shortwave and longwave radiation) were measured and compared on each surface. The mean air temperature, humidity and wind speed of the pavement materials did not differ significantly and showed the greatest difference in the mean radiant temperature. Natural grass, which has the highest albedo, has the highest amount of shortwave radiation. The artificial turf had the highest surface temperature and the highest amount of longwave radiation. In the human thermal environment index PET, artificial grass > clay sand > natural grass. Natural grass had a maximum 2/3 level lower and a mean 1/2 level lower in PET as compared to artificial grass. The clay sand pavement had a maximum 2/3 level lower and a mean 1/3 level lower than the artificial grass. Natural grass had a maximum 1/3 level lower than the clay sand pavement. Their UTCIs showed smaller differences than the PETs. Therefore, it is necessary to carefully choose materials from the planning stage when designing outdoor spaces, including playgrounds.

Uncanny Valley Effect in the Animation Character Design - focusing on Avoiding or Utilizing the Uncanny Valley Effect (애니메이션 캐릭터 디자인에서의 언캐니 밸리 효과 연구 - 언캐니 밸리(uncanny valley)의 회피와 이용을 중심으로)

  • Ding, LI;Moon, Hyoun-Sun
    • Cartoon and Animation Studies
    • /
    • s.43
    • /
    • pp.321-342
    • /
    • 2016
  • The "uncanny valley" curve describes the measured results of the negative emotion response which depends on the similarity between the artificially created character and the real human shape. The "uncanny valley" effect that usually appears in the animation character design induces negative response such as fear and hatred feeling, and anxiety, which is not expected by designers. Especially, in the case of the commercial animation which mostly reply on public response, this kind of negative response is directly related to the failure of artificially created character. Accordingly, designers adjust the desirability of the character design by avoiding or utilizing the "uncanny valley" effect, inducing certain character effect that leads to the success in animation work. This manuscript confirmed the "uncanny valley" coefficient of the positive emotion character design which was based on the actual character design and animation analysis. The "uncanny valley" concept was firstly introduced by a medical scientist Ernst Jentsch in 1906. After then, a psychologist Freud applied this concept to psychological phenomenon in 1919 and a Japanese robert expert Professor Masahiro Mori presented the "uncanny valley" theory on the view of the recognition effect. This paper interpreted the "uncanny valley" effect based on these research theory outcomes in two aspects including sensation production and emotion expression. The mickey-mouse character design analysis confirmed the existence basis of the "uncanny valley" effect, which presented how mickey-mouse human shape image imposed the "uncanny valley" effect on audience. The animation work analysis investigated the reason why the produced 3D animation character should not be 100% similar to the real human by comparing the animation baby character produced by Pix company as the experimental subject to the data of the real baby with the same age. Therefore, the examples of avoiding or utilizing the "uncanny valley" effect in animation character design was discussed in detail and the four stages of sensation production and emotional change of audience due to this kind of effect was figured out. This research result can be used as an important reference in deciding the desirability of the animation character.

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation (ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석)

  • Lim, Hyeonwoo;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.1-22
    • /
    • 2022
  • The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.

A Study on the Tangible Interface Design System -With Emphasis on the Prototyping & Design Methods of Tangibles - (실체적 인터페이스 디자인 시스템에 관한 연구 - 텐저블즈의 설계 및 프로토타입 구현을 중심으로 -)

  • 최민영;임창영
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.5-14
    • /
    • 2004
  • Introducing human capacities of control and sensation which have been overlooked into Human-Computer Interaction(HCI), Ubiquitous computing, Augmented Reality and others have been researched recently. New vision of HCI has embodied in Tangible User Interface(TUI). TUI allows users to grasp and manipulate bits with everyday physical object and architectural surface and also TUI enables user to be aware of background object at the periphery of human perception using ambient display media such of light, sound, airflow and water movement. Tangibles, physical object which constitutes TUI system, is the physical object embodied digital bit. Tangibles is not only input device but also the configuration of computing. To get feedback of computing result, user controls the system with Tangibles as action and the system represents reaction in response to User's action. User appreciates digital representation (sound, graphic information) and physical representation (form, size, location, direction etc.) for reaction. TUI's characters require the consideration about both user's action and system's reaction. Therefore we have to need the method to be concerned about physical object and interaction which can be combined with action, reaction and feedback.

  • PDF

Physiological Responses and Subjective Sensations of Human Wearing Soccer Wear of Different Materials and Designs (축구복 소재와 디자인이 인체생리반응과 주관적 감각에 미치는 영향)

  • Choi Jeong-Wha;Kim So-Young;Jeon Tae-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to evaluate thermal properties of soccer wear with different materials and designs. As a beginning step, the questionnaire survey about the actual condition of soccer wears was conducted. with the results of the questinnaire, two soccer wears with new material and design that were improved in tactile sensations, absorption and ventilation were developed. We evaluated thermal and subjective responses of subjects wearing Korea national soccer team uniform in 1998 World Cup (Uniform 98), soccer wear with new material and same design(New II) and with new material and new design(New I). New I was made with mesh in armhole for improving ventilation. Rectal temperature, skin temperature, clothing microclimate, and heart rate were measured in climatic chamber test(twelve times) and field test(eighteen times). The results were as follows. 1. As the results of the climatic chamber test, rectal temperature was lower in New I and New II than Uniform98, and mean skin temperature was lower in New I than Uniform 98 and New II. Heart rate was lower in New I than New II, and total body weight loss and local sweating were not significantly different by soccer wears. 2. As the results of the field test, rectal temperature was lower in New I than Uniform98 and New II. Mean skin temperature was lower in New II than Uniform98 and New I. Clothing microclimate temperature was lower in New II than Uniform98 and New 1, and clothing microclimate humidity was lower in New I, New II than Uniform 98. Heart rate was lower in New I than Uniform 98, New II and total body weight loss and local sweating were lower in New I, New II than Uniform 98. In conclusion, New I using new design using mesh in armhole and new material using sweat absorbent finishing was excellent from the point of view of physical responses, ventilation and sweat absorption.

A Human Sensibility Ergonomic Design for Developing Aesthetically and Emotionally Affecting Glass Panels of Changing Colors

  • Kim, Sang Ho;Kim, Sun Ah;Shin, Jong Kyu;Ahn, Jeong Yoon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.535-550
    • /
    • 2016
  • Objective: To enhance user experience of the product by using "wow" materials and parts, a framework for participatory emotional design and evaluation was proposed and validated through a case study in this paper. Background: Customers in recent days value a product which provides new feeling and images they want to get while interacting with it beyond its function, quality, and usability. Since the product consists of various parts and materials, "wow" materials and parts which can affect the customer's feeling and emotions are the essential components for changing the user experience. Method: A framework for participatory and human sensibility ergonomic design was considered and applied on developing the aesthetically and emotionally affecting glass panels of changing colors. Design experts defined a target market for this multicolor glass panels and modified the existing designing goal. Constraints for this design modification were identified by market trend research and consulting with the company which owns the technology for checking out its feasibility. The company developed and provided prototype samples as well as their competing materials. Quantitative and qualitative evaluation of the emotional quality was conducted to validate whether the design goal was achieved successfully. Results: The target market for the developing materials was defined as finishing for the buildings. The designing goal was set as to feed new visual sensation of clean and colorful images. The emotional quality of two different types of multicolor glass panels and an ordinary unicolor panel were evaluated quantitatively with semantic differential method. Results showed that the emotion of the subjects for the multicolor glass panels can be abstracted into two dimensions; named 'colorfulness' and 'harmony'. It was found that the developed samples got higher scores in emotional quality for both dimensions compared to the ordinary one. Age was found to be a significant factor for evaluating the emotional quality of colorfulness. Conclusion and Applications: The proposed framework is a valid approach for enhancing the user experience of the product by participatory design of emotional materials and parts. This framework can be applied easily on the emotional design and evaluation of different materials and components.