DOI QR코드

DOI QR Code

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation

ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석

  • Lim, Hyeonwoo (Lab. of Landscape Architecture, Graduate School of Horticultural Science, College of Applied Life Sciences, Jeju National University) ;
  • Jo, Sangman (Lab. of Landscape Architecture, Graduate School of Horticultural Science, College of Applied Life Sciences, Jeju National University) ;
  • Park, Sookuk (Research Institute for Subtropical Agriculture and Animal Biotechnology, SARI, Lab. of Landscape Architecture, Horticultural Science, College of Applied Life Sciences, Jeju National University)
  • 임현우 (제주대학교 생명자원과학대학 원예학과 대학원 조경학연구실) ;
  • 조상만 (제주대학교 생명자원과학대학 원예학과 대학원 조경학연구실) ;
  • 박수국 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공 조경학연구실․아열대농업생명과학연구소․친환경농업연구소)
  • Received : 2021.11.24
  • Accepted : 2022.02.15
  • Published : 2022.04.30

Abstract

The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.

컴퓨터 시뮬레이션 프로그램인 ENVI-met을 활용하여 여름철 도로 방향과 가로수 식재형태에 따른 도시공간의 열환경 개선 효과를 분석하였다. 수목 식재 시 낮 시간 동안의 기온과 풍속은 감소하고 상대습도는 증가하였다. 평균복사온도와 인간 열환경지수 PET(physiological equivalent temperature), UTCI(universal thermal climate index)는 수목 식재 시 감소하는 경향을 보였다. 수목 식재 시 가장 큰 변화를 보인 기상요소는 평균복사온도로, PET와 UTCI 변화량 또한 평균복사온도와 유사한 패턴을 보였다. 가장 큰 저감효과를 보인 수목식재방법은 수고가 낮고, 수관폭이 넓고, 엽면적지수가 높은 수목을 좁은 간격으로 식재하는 시나리오(LWDN)였다. 평균복사온도, PET, UTCI는 태양의 고도 및 방위와 건물의 위치에 따른 그림자 형성 조건에 따라 큰 차이를 보였으며, 건물에 의한 태양복사에너지 차단이 클수록 수목에 의한 영향이 줄어들었다. 특히, 동측과 서측 보도에서는 시간대별 저감량에서 큰 차이를 보였다. 가장 저감효과가 큰 수목식재 시나리오인 LWDN으로 식재하였을 때 서측 방면에 위치한 북서, 서, 남서측 보도는 오전 시간대인 10:00에 수목이 없는 경우에 비해 PET 8.6-12.3℃, UTCI 4.2-4.5℃, 동측 방면에 위치한 북동, 동, 남동측 보도는 오후 시간대인 16:00에 PET 8.1-11.8℃, UTCI 4.4-5.0℃로 큰 저감효과를 보였다. 반면, 가장 저감효과가 적었던 수고가 높고, 수관폭이 좁으며, 엽면적지수가 낮은 수목을 넓은 간격으로 식재하였을 때 최대 저감량은 동측 방면 보도에서 PET 1.8℃, UTCI 0.9℃ 이하, 서측 방면 보도에서 PET 3℃, UTCI 0.9℃ 이하로 적은 저감효과를 보였다. 또한, 건물에 의한 영향으로 인해 수목영향이 적은 시간대에는 수목식재 시나리오 간 평균복사온도, PET, UTCI 저감효과의 차이가 크지 않았다. 이 연구결과는 가로수 식재 시 여름철 도시 열환경 저감을 위한 모델 개발에 기초자료로서 활용가능할 것이다.

Keywords

References

  1. Acero, J. A. and K. Herranz-Pascual(2015) A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment 93: 245-257. https://doi.org/10.1016/j.buildenv.2015.06.028
  2. Ali-Toudert, F. and H. Mayer(2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment 41(2): 94-108. https://doi.org/10.1016/j.buildenv.2005.01.013
  3. Ali-Toudert, F. and H. Mayer(2007) Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy 81(6): 742-754. https://doi.org/10.1016/j.solener.2006.10.007
  4. Biqaraz, B., R. Fayaz and G. Haghighaat Naeeni(2019) A comparison of outdoor thermal comfort in historical and contemporary urban fabrics of Lar City. Urban Climate 27: 212-226. https://doi.org/10.1016/j.uclim.2018.11.007
  5. Blazejczyk, K., G. Jendritzky, P. Brode, D. Fiala, G. Havenith, Y. Epstein, A. Psikuta and B. Kampmann(2013) An introduction to the universal thermal climate index(UTCI). Geographia Polonica 86(1): 5-10. https://doi.org/10.7163/GPol.2013.1
  6. Brown, R. D. and T. J. Gillespie(1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology 30(1): 43-52. https://doi.org/10.1007/BF02192058
  7. Brode, P., E. L. Kruger, F. A. Rossi and D. Fiala(2012a) Predicting urban outdoor thermal comfort by the universal thermal climate Index UTCI-A case study in Southern Brazil. International Journal of Biometeorology 56(3): 471-480. https://doi.org/10.1007/s00484-011-0452-3
  8. Brode, P., D. Fiala, K. Blazejczyk, I. Holmer, G. Jendritzky, B. Kampmann, B. Tinz and G. Havenith(2012b). Deriving the operational procedure for the universal thermal climate index(UTCI). International Journal of Biometeorology 56(3): 481-494. https://doi.org/10.1007/s00484-011-0454-1
  9. Bruse, M. and H. Fleer(1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software 13(3-4): 373-384. https://doi.org/10.1016/S1364-8152(98)00042-5
  10. Chatterjee, S., A. Khan, A. dinda, S. Mithun, R. Khatun, H. Akbari, H. Kusaka, C. Mitra, S. S. Bhatti, Q. V. Doan and Y. Wang(2019) Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands. Science of The Total Environment 663: 610-631. https://doi.org/10.1016/j.scitotenv.2019.01.299
  11. Chen, L. and E. Ng(2013) Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: A case study in Hong Kong. Architectural Science Review 56(4): 1-9. https://doi.org/10.1080/00038628.2012.753783
  12. Chen, Y., T. Lin and A. Matzarakis(2014) Comparison of mean radiant temperature from field experiment and modelling: A case study in Freiburg, Germany. Theoretical and Applied Climatology 118(3): 535-551. https://doi.org/10.1007/s00704-013-1081-z
  13. Chow, W. T. L. and A. J. Brazel(2012) Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Building and Environment 47: 170-181. https://doi.org/10.1016/j.buildenv.2011.07.027
  14. Chow, W. T. L., R. Pope, C. Martin and A. Brazel(2011) Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theoretical and Applied Climatology 103(1-2): 197-211. https://doi.org/10.1007/s00704-010-0293-8
  15. Coccolo, S., J. Kampf, J. L. Scartezzini and D. Pearlmutter(2016) Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate 18: 33-57. https://doi.org/10.1016/j.uclim.2016.08.004
  16. Fanger, P. O.(1970) Thermal Comfort. Analysis and Applications in Environmental Engineering. Thermal Comfort. Analysis and Applications in Environmental Engineering. New York: McGraw-Hill.
  17. Fiala, D., K. J. Lomas and M. Stohrer(2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Transactions 109: 179-186.
  18. Gagge, A. P.(1936) The linearity criterion as applied to partitional calorimetry. American Journal of Physiology 116(3): 656-668. https://doi.org/10.1152/ajplegacy.1936.116.3.656
  19. Gusson, C. S. and D. H. S. Duarte(2016) Effects of built density and urban morphology on urban microclimate - Calibration of the model ENVI-met V4 for the subtropical Sao Paulo, Brazil. Procedia Engineering 169: 2-10. https://doi.org/10.1016/j.proeng.2016.10.001
  20. Hedquist, B. C. and A. J. Brazel(2014) Seasonal variability of temperatures and outdoor human comfort in phoenix, Arizona, U.S.A. Building and Environment 72: 377-388. https://doi.org/10.1016/j.buildenv.2013.11.018
  21. Hoppe, P. R.(1993) Heat balance modelling. Experientia 49(9): 741-746. https://doi.org/10.1007/BF01923542
  22. Hoppe, P. R.(1999) The physiological equivalent temperature-A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43(2): 71-75. https://doi.org/10.1007/s004840050118
  23. Hyun, C.(2019) Analysis of Human Thermal Environments in The Apartment Complex by Computer Simulation - Goduck-Gangil Area, Gandon-gu, Seoul Metropolitan City. Master Thesis. Jeju National University, Jeju.
  24. Janicke, B., F. Meier, M. T. Hoelscher and D. Scherer(2015) Evaluating the effects of facade greening on human bioclimate in a complex urban environment. Advances in Meteorology, 2015.
  25. Jo, S., C. Hyun and S. Park(2017) Analysis of the influence of street trees on human thermal sensation in summer. Journal of Korean Institute of Landscape Architecture 45(5): 105-112. https://doi.org/10.9715/KILA.2017.45.5.105
  26. Jung, L., Y. Jin, Y. Jeun, K. Ko, H. Park and S. Park(2016) A case study of human thermal sensation(comfort) in plastic houses. The Korean Environmental Sciences Society 25(8): 1115-1129.
  27. Katsoulas, N., D. Antoniadis, I. L. Tsirogiannis, E. Labraki, T. Bartzanas and C. Kittas(2017) Microclimatic effects of planted hydroponic structures in urban environment: Measurements and simulations. International Journal of Biometeorology 61(5): 1-14.
  28. Kruger, E. L., F. O. Minella and F. Rasia(2011) Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment 46(3): 621-634. https://doi.org/10.1016/j.buildenv.2010.09.006
  29. Kovats, R. S. and S. Hajat(2008) Heat stress and public health: A critical review. Annual Review of Public Health 29: 41-55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
  30. Lam, C. K. C., H. Lee, S. Yang and S. Park(2021) A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustainable Cities and Society: 102971.
  31. Lee, H., H. Mayer and L. Chen(2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning 148: 37-50. https://doi.org/10.1016/j.landurbplan.2015.12.004
  32. Lee, H., H. Mayer and W. Kuttler(2020) Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside E-W urban street canyons under Central European conditions. Urban Forestry & Urban Greening 48: 126558. https://doi.org/10.1016/j.ufug.2019.126558
  33. Lee, H. and H. Mayer(2021) Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons - Analysis under Central European heat wave conditions. Urban Forestry & Urban Greening 58: 126905. https://doi.org/10.1016/j.ufug.2020.126905
  34. Lenzholzer, S. and R. D. Brown(2016) Post-positivist microclimatic urban design research: A review. Landscape and Urban Planning 153: 111-121. https://doi.org/10.1016/j.landurbplan.2016.05.008
  35. Li, Y. and Y. Song(2019) Optimization of vegetation arrangement to improve microclimate and thermal comfort in an urban park. International Review for Spatial Planning and Sustainable Development 7(1): 18-30. https://doi.org/10.14246/irspsd.7.1_18
  36. Lobaccaro, G., J. A. Acero, G. Sanchez Martinez, A. Padro, T. Laburu and G. Fernandez(2019) Effects of orientations, aspect ratios, pavement materials and vegetation elements on thermal stress inside typical urban canyons. International Journal of Environmental Research and Public Health 16(19): 3574. https://doi.org/10.3390/ijerph16193574
  37. Lopez-Cabeza, V. P., C. Galan-Marin, C. Rivera-Gomez and J. Roa-Fernandez(2018) Courtyard microclimate ENVI-met outputs deviation from the experimental data. Building and Environment 144: 129-141. https://doi.org/10.1016/j.buildenv.2018.08.013
  38. Lyu, T., R. Buccolieri and Z. Gao(2019) A numerical study on the correlation between sky view factor and summer microclimate of local climate zones. Atmosphere 10(8): 438. https://doi.org/10.3390/atmos10080438
  39. Ma, X., H. Fukuda, D. Zhou and M. Wang(2019a) A study of the pedestrianized zone for tourists: Urban design effects on humans' thermal comfort in Fo Shan City, Southern China. Sustainability 11(10): 2774. https://doi.org/10.3390/su11102774
  40. Ma, X., H. Fukuda, D. Zhou and M. Wang(2019b) Study on outdoor thermal comfort of the commercial pedestrian block in hot-summer and cold-winter region of southern China-A case study of the Taizhou Old Block. Tourism Management 75: 186-205. https://doi.org/10.1016/j.tourman.2019.05.005
  41. Matzarakis, A. and H. Mayer(1996). Another kind of environmental stress: Thermal stress. WHO Newsletter 18(January 1996): 7-10.
  42. Matzarakis, A., F. Rutz and H. Mayer(2007) Modelling radiation fluxes in simple and complex environments-Application of the RayMan model. International Journal of Biometeorology 51(4): 323-334. https://doi.org/10.1007/s00484-006-0061-8
  43. Matzarakis, A., F. Rutz and H. Mayer(2010) Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology 54(2): 131-139. https://doi.org/10.1007/s00484-009-0261-0
  44. Mohammad, P., S. Aghlmand, A. Fadaei, S. Gachkar, D. Gachkar and A. Karimi(2021) Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate 40: 100993. https://doi.org/10.1016/j.uclim.2021.100993
  45. Middel, A., K. Hab, A. J. Brazel, C. A. Martin and S. Guhathakurta(2014) Impact of urban form and design on mid-afternoon microclimate in phoenix local climate zones. Landscape and Urban Planning 122: 16-28. https://doi.org/10.1016/j.landurbplan.2013.11.004
  46. Morakinyo, T. E., L. Kong, K. K. L. Lau, C. Yuan and E. Ng(2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment 115: 1-17. https://doi.org/10.1016/j.buildenv.2017.01.005
  47. Morakinyo, T. E., A. Lai, K. K. L. Lau and E. Ng(2019) Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening 37: 42-55. https://doi.org/10.1016/j.ufug.2017.11.010
  48. Morakinyo, T. E., W. Ouyang, K. K. L. Lau, C. Ren and E. Ng(2020) Right tree, right place(urban canyon): Tree species selection approach for optimum urban heat mitigation-development and evaluation. Science of The Total Environment 719: 137461. https://doi.org/10.1016/j.scitotenv.2020.137461
  49. Muller, N., W. Kuttler and A. B. Barlag(2014) Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theoretical & Applied Climatology 115(1-2): 243-257. https://doi.org/10.1007/s00704-013-0890-4
  50. Ng, E., L. Chen, Y. Wang and C. Yuan(2012) A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment 47: 256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
  51. Oke, T. R.(1982) The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108: 1-24. https://doi.org/10.1002/qj.49710845502
  52. Park, C., D. Lee, E. S. Krayenhoff, H. Heo, J. Hyun, K. Oh and T. Park(2019) Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustainable Cities and Society 48: 101521. https://doi.org/10.1016/j.scs.2019.101521
  53. Park, S.(2011) Human-Urban Radiation Exchange Simulation Model. Doctoral Dissertation. University of Victoria.
  54. Park, S.(2012) The Initial Investigation for Making Human Bioclimatic Maps: A Site of Downtown Daegu. Research Report to Daegu Gyeongbuk Development Institute.
  55. Park, S., H. Kong and H. Kang(2020) Comparison of differences on microclimatic factors and human thermal sensation between in situ measurement and computer modeling. Ecology and Resilient Infrastructure 7(1): 43-52. https://doi.org/10.17820/eri.2020.7.1.043
  56. Park, S., S. E. Tuller and M. Jo(2014) Application of universal thermal climate index(UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning 125: 146-155. https://doi.org/10.1016/j.landurbplan.2014.02.014
  57. Piselli, C., V. L. Castaldo, I. Pigliautile, A. L. Pisello and F. Cotana(2018) Outdoor comfort conditions in urban areas: On citizens' perspective about microclimate mitigation of urban transit areas. Sustainable Cities and Society 39: 16-36. https://doi.org/10.1016/j.scs.2018.02.004
  58. Qaid, A. and D. R. Ossen(2015) Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology 59(6): 657-677. https://doi.org/10.1007/s00484-014-0878-5
  59. Salata, F., I. Golasi, R. de Lieto Vollaro and A. de Lieto Vollaro(2016) Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society 26: 318-343. https://doi.org/10.1016/j.scs.2016.07.005
  60. Simon, H., T. Sinsel and M. Bruse(2020) Introduction of fractal-based tree digitalization and accurate in-canopy radiation transfer modelling to the microclimate model ENVI-met. Forests 11(8): 869. https://doi.org/10.3390/f11080869
  61. Stewart, I. D and T. R. Oke(2012) Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93(12): 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  62. Sun S., X. Xu, Z. Lao, W. Liu, Z. Li, E. Higueras Garcia, L. He and J. Zhu(2017) Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment 123: 277-288. https://doi.org/10.1016/j.buildenv.2017.07.010
  63. Taleghani, M., L. Kleerekoper, M. Tenpierik and A. van den Dobbelsteen(2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment 83: 65-78. https://doi.org/10.1016/j.buildenv.2014.03.014
  64. Tan, J., L. Yang, C. S. B. Grimmond, J. Shi, W. Gu, Y. Chang, P. Hu, J. Sun, X. Ao and Z. Han(2015) Urban integrated meteorological observations: Practice and experience in Shanghai, China. Bulletin of the American Meteorological Society 96(1): 197-210.
  65. Teshenehdel, S., H. Akbari, E. D. Giuseppe and R. D. Brown(2020) Effect of tree cover and tree species on microclimate and pedestrian comfort in a residential district in Iran. Building and Environment 178: 106899. https://doi.org/10.1016/j.buildenv.2020.106899
  66. Toparlar, Y., B. Blocken, B. Maiheu and G. J. F. Van Heijst(2017) A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews 80: 1613-1640. https://doi.org/10.1016/j.rser.2017.05.248
  67. Wang, Y., F. Bakker, R. de Groot, H. Wortche and R. Leemans(2015) Effects of urban trees on local outdoor microclimate: Synthesizing field measurements by numerical modelling. Urban Ecosystems 18(4): 1305-1331. https://doi.org/10.1007/s11252-015-0447-7
  68. Yang, X., L. Zhao, M. Bruse and Q. Meng(2013) Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment 60: 93-104. https://doi.org/10.1016/j.buildenv.2012.11.008
  69. Yang, W., Y. Lin and C. Q. Li(2018) Effects of landscape design on urban microclimate and thermal comfort in tropical climate. Advances in Meteorology 2018: 13.
  70. Yang, Y., D. Zhou, Y. Wang, D. Ma, W. Chen, D. Xu and Z. Zhu(2019) Economical and outdoor thermal comfort analysis of greening in multistory residential areas in Xi'an. Sustainable Cities and Society 51: 101730. https://doi.org/10.1016/j.scs.2019.101730
  71. Zhang, L., Q. Zhan and Y. Lan(2018) Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment 130: 27-39. https://doi.org/10.1016/j.buildenv.2017.12.014