DOI QR코드

DOI QR Code

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do

Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구

  • Kong, Hak-Yang (Department of Environment Research Division, National Institute of Environmental Research) ;
  • Choi, Nakhoon (Department of Environment Research Division, National Institute of Environmental Research) ;
  • Park, Sookuk (Research Institute for Subtropical Agriculture and Animal Biotechnology, SARI, Horticultural Science, College of Applied Life Sciences, Jeju National University)
  • 공학양 (국립환경과학원 환경자원연구부 자연환경연구과) ;
  • 최낙훈 (국립환경과학원 환경자원연구부 자연환경연구과) ;
  • 박수국 (제주대학교 생명자원과학대학 생물산업학부 원예환경전공)
  • Received : 2020.06.11
  • Accepted : 2020.12.10
  • Published : 2020.12.31

Abstract

Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

도시지역의 여름철 밤 시간대 열환경을 알아보기 위해, 토지피복 대분류에 따라 10개의 도시기후지역 지점에서 미기후 자료를 측정하여 인간 열환경지수를 분석하여 보았다. 미기후 요소 비교 분석 결과, 그린인프라 지역이 그레이인프라 지역보다 기온에서는 평균 1.6℃ 최대 2.4℃ 낮은 결과를 보였으며, 상대습도에서는 반대로 그린인프라 지역이 평균 9.0% 최대 15.0% 높은 결과를 보였다. 풍속에서는 그린인프라 지역과 그레이인프라 지역에서 차이가 거의 없는 것으로 나타났으며, 수목의 영향으로 가장 낮은 풍속을 보인 산림지점을 제외하고는 모든 지점에서 유의성이 없는 것으로 나타나, 건물이나 수목의 높이에 의해 결정되는 표면거칠기 뿐만 아니라 지역풍의 영향이 풍속을 결정하는 주 요인인 것으로 보인다. 평균복사온도에서는 수목의 영향으로 산림지역이 가장 높은 값을 보였으며, 산림지역을 제외하면 그린인프라 지역이 그레이인프라 지역에 비해 평균 5.5℃의 저감 효과를 보였다. 평균복사온도를 결정하는 주 요인으로는 하늘시계지수라고 할 수 있다. 인간 열환경지수 분석에서는 그린인프라 지역은 거의 덥지도 춥지도 않는 '중립'의 열지각 단계를 나타내었으며, 그레이인프라 지역은 그것보다 한 단계 높은 '약간 따뜻함'의 단계를 나타내었다. 가장 높게 나온 산림지역을 제외하면, 그린인프라 지역이 그레이인프라 지역에 비해 3.2℃ 저감 효과를 보여 1/2 단계의 인간 열환경 개선 효과가 있는 것으로 나타났다.

Keywords

References

  1. Arnfield, A.J. 2003. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology 23(1): 1-26. https://doi.org/10.1002/joc.859
  2. Bowler, D.E., Buyung-Ali, L., Knight, T.M., and Pulin, A.S. 2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence, Landscape Urban Plan 97: 147-155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  3. Cha, J., Jung, E., Ryu, J., and Kim, D. 2007. Constructing a green network and wind corridor to alleviate the urban heat-island. Journal of the Korean Association of Geographic Information Studies 10(1): 102-112. (in Korean)
  4. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A.G., Mittal, N., Feliu, E., and Faehnle, M. 2014. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management 146: 107-115. https://doi.org/10.1016/j.jenvman.2014.07.025
  5. Dimoudi, A. and Nikolopoulou, M. 2003. Vegetation in the urban environment: micro-climatic analysis and benefits. Building and Environment 35: 69-76. https://doi.org/10.1016/S0378-7788(02)00081-6
  6. European Commission. 2013. Building a Green Infrastructure for Europe, http://ec.europa.eu/environment/nature/ecosystems/docs/greeninfrastructurebroc.pdf.
  7. Gill, S.E., Handley, J.F., Ennos, A.R., and Psuleat, S. 2007. Adapting cities for climate changes: the role of the green infrastructure. Building and Environment 33: 115-33.
  8. Han, S. 2006. The effect of the restored Choenggye stream on heat island intensity and building cooling load in the surrounding area. Master thesis, University of Seoul. (in Korean)
  9. Hong, J., Hong, J., Lee, S., and Lee, J. 2013. Spatial distribution of urban heat island based on local climate zone of automatic weather station in Seoul metropolitan area. Atmosphere 23(4): 413-424. (in Korean) https://doi.org/10.14191/Atmos.2013.23.4.413
  10. Höppe, P.R. 1999. The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43: 71-75. https://doi.org/10.1007/s004840050118
  11. IPCC. 2013. Climate Change 2013: The Physical Science Basis. WMO, 7bis, Avenue de la Paix, 1211 Geneva2.
  12. Jo, H.K. and Ahn, T.W. 1999. Function of microclimate amelioration by urban greenspace, Journal of the Korean Institute of Landscape Architecture 27(4): 23-28. (in Korean)
  13. Kim, K. and Eum, J. 2017. Classification of local climate zone by using WUDAPT Protocol-A case study of Seoul, Korea. Journal of the Korean Institute of Landscape Architecture 45(4): 131-142. (in Korean) https://doi.org/10.9715/KILA.2017.45.4.131
  14. Klimn, W., Heusinkveld, B.G., Lenzholzer, S., Jacobs, M.H., and van Hove, B. 2015. Psychological and physical impact of urban green spaces on outdoor thermal comport during summertime in the Netherlands. Building Environment 83: 120-128. https://doi.org/10.1016/j.buildenv.2014.05.013
  15. Kong, H., Choi, N., Park, S., Lee, J., and Park, S. 2018. A study on human thermal comfort of residential development districts in summer season. Ecology and Resilient Infrastructure 5(4): 219-228. (in Korean)
  16. Kovacs, A. and Nemeth, A. 2012. Tendencies and differences in human thermal comfort in district urban areas in Budapest, Hungary. Universitatis Szegediensis, Tomus 46: 115-124.
  17. Kwok, Y.T., Schoetter, R., Lau, K., Hidalgo, J., Ren, C., Pigeon, G., and Masson, V. 2019. How well does the local climate zone scheme discern the thermal environment of Toulouse (France)? An analysis using numerical simulation data. International Journal of Climatology 39(14): 5292-5315. https://doi.org/10.1002/joc.6140
  18. Lafortezza, R., Davies, C., Sanesi, G., and Konijnendijk, C.C. 2013. Green Infrastructure as a tool to support spatial planning in European urban regions, iForest Biogeosci. For. 6(7): 102. https://doi.org/10.3832/ifor0723-006
  19. Lau, K.K., Chung, S.C., and Ren, C. 2019. Outdoor thermal comfort in different urban settings of sub-tropical high- density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment 154: 227-238. https://doi.org/10.1016/j.buildenv.2019.03.005
  20. Lyu, T., Buccolieri, R., and Gao, Z. 2019. A numerical study on the correlation between sky view factor and summer microclimate of local climate zones. Atmosphere 10(8). 438, doi: 10.3390/atmos10080438.
  21. Matzarakis, A., Mayer, H., and Iziomon, M.G. 1999. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology 43: 76-84. https://doi.org/10.1007/s004840050119
  22. Matzarakis, A., Rutz, F., and Mayer, H. 2010. Modelling radiation fluxes in simple and complex environments: basics of the RayMan Model. International Journal of Biometeorology 54(2): 131-139. https://doi.org/10.1007/s00484-009-0261-0
  23. Mell, I.C. 2008. "Green infrastructure: Concepts and planning." FORUM: Int. J. Postgraduate Stud. Archit. Plann. Landscape 8(1): 69-80.
  24. Milosevic, D.D., Savic, S.M., Markovic, V., Arsenovic, D., and Secerov, I. 2016. Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin 65(2): 129-137. https://doi.org/10.15201/hungeobull.65.2.4
  25. Muller, N., Kuttler, W., and Barlag, A. 2014. Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology 115: 243-257. https://doi.org/10.1007/s00704-013-0890-4
  26. Norton, B.A., Coutts, A.M., Livesley, S.J., Harris, R.J., Hunter, A.M., and Williams N.S.C. 2015. Planning for cooler cities: A Framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134: 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018
  27. Oke, T.R. 1973. City size and the urban heat island. Atmospheric Environment 7(8): 769-779. https://doi.org/10.1016/0004-6981(73)90140-6
  28. Ottele, M., Perini, K., Fraaij, A.L.A., Haas, E.M., and Raiteri, R. 2011. Comparative life cycle analysis for green facades and living wall systems. Energy and Buildings 43(12): 3419-3429. https://doi.org/10.1016/j.enbuild.2011.09.010
  29. Park, K. and Jung, S. 1999. Analysis on urban heat island effects for the metropolitan green space planning. Journal of the Korean Association of Geographic Information Studies 2(3): 35-45. (in Korean)
  30. Park, S. 2011. Human-Urban Radiation Exchange Simulation Model. PhD dissertation, University of Victoria, Victoria, B.C., Canada.
  31. Song, Y. 2002. Influence of new town development on the urban heat islands-in the case of Pan-Gyo area and Bun-Dang new town. Journal of the Korean Institute of Landscape Architecture 30(4): 37-46. (in Korean)
  32. Stewart, I.D. and Oke, T.R. 2012. 'Local climate zones' for urban temperature studies. Bulletin of the American Meteorological Society 93: 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  33. Stewart, I.D., Oke, T.R., and Krayenhoff, E.S. 2014. Evaluation of the "local climate zone" scheme using temperature observations and model simulations. International Journal of Climatology 34(4): 1062-1080. https://doi.org/10.1002/joc.3746
  34. Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kazmierczak, A., Niemela, J., and James, P. 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and urban planning 81(3): 167-178. https://doi.org/10.1016/j.landurbplan.2007.02.001
  35. Unger, J., Skarbit, N., and Gal, T. 2018. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database. International Journal of Biometeorology 62(2): 183-193. https://doi.org/10.1007/s00484-017-1440-z
  36. Villadiego, K. and Velay-Dabat, M.A. 2014. Outdoor thermal comfort in a hot and humid climate of Columbia: A field study in Barranquilla. Building and Environment 75: 142-152. https://doi.org/10.1016/j.buildenv.2014.01.017
  37. Yeo, I., Yee, J., and Yoon, S. 2009. Analysis on the effects of building coverage ratio and floor space index on urban climate. Journal of the Korean Solar Energy Society 29(3): 19-27. (in Korean)
  38. Yi, C., Eum, J., Choi, Y., Kim, K., Scherer, C., Feherenbach, U., and Kim, G. 2011. Development of climate analysis Seoul (CAS) maps based on landuse and meteorological Model. Journal of the Korean Association of Geographic Information Studies 14(1): 12-25. (in Korean) https://doi.org/10.11108/kagis.2011.14.1.012