• Title/Summary/Keyword: Human mesenchymal stem cell

Search Result 218, Processing Time 0.022 seconds

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse

  • Yong Soo Park;Yeonji Kim;Sung Won Kim; In-Beom Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • The human turbinate-derived mesenchymal stem cells (hTMSCs), which were DiI-labeled and transplanted into the subretinal space in degenerating mouse retina, were observed in retinal vertical sections processed for rhodopsin (a marker for rod photoreceptor) by confocal microscope with differential interference contrast (DIC) filters. The images clearly demonstrated that DiI-labeled hTMSCs have rhodopsin-immunoreactive appendages, indicating differentiation of transplanted hTMSC into rod photoreceptor. Conclusively, the finding suggests therapeutic potential of hTMSCs in retinal degeneration.

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Effect of S-Allyl Cysteine(SAC) on the Proliferation of Umbilical Cord Blood(UCB)-derived Mesenchymal Stem Cells(MSCs) (S-Allyl Cysteine(SAC)이 제대혈 유래 중간엽 줄기세포 증식에 미치는 영향)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.313-319
    • /
    • 2009
  • To improve the growth of human mesenchymal stem cells(hMSCs) under general cell culture conditions(20% $O_2$ and 5% $CO_2$), we examined the effect of s-allylcysteine(SAC), which is known as an antioxidant and the main component of aged-garlic extract, on hydrogen peroxide-induced cellular stress in hMSCs. We found that SAC blocked hydrogen peroxideinduced cell death and cellular apoptosis, but that SAC did not improve the growth of hMSCs during short-term culture. To evaluate the protective effect of SAC, we examined the endogenous expression of the antioxidant enzymes catalase (CAT), superoxide dismutase(SOD), and glutathione peroxidase(Gpx) in hMSCs. Hydrogen peroxide was found to downregulate the expression of CAT, SOD, and Gpx at the protein level. However, in the pre-treatment group of SAC, SAC inhibited the hydrogen peroxide-induced down-regulation of CAT, SOD, and Gpx. Unfortunately, treatment with SAC alone did not induce the up-regulation of antioxidant enzymes and the cell proliferation of hMSCs. Surprisingly, SAC improved cell growth in a single cell level culture of hMSCs. These results indicate that SAC may be involved in the preservation of the self-renewal capacity of hMSCs. Taken together, SAC improves the proliferation of hMSCs via inhibition of oxidative-stress-induced cell apoptosis through regulation of antioxidant enzymes. In conclusion, SAC may be an indispensable component in an in vitro culture system of human MSCs for maintaining self-renewal and multipotent characterization of human MSCs.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.

Global knockdown of microRNAs affects the expression of growth factors and cytokines in human adipose-derived mesenchymal stem cells

  • Park, Seul-Ki;Lee, Jung Shin;Choi, Eun Kyung;You, Dalsan;Kim, Choung-Soo;Suh, Nayoung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.469-474
    • /
    • 2014
  • Cell therapies utilizing mesenchymal stem cells (MSCs) have a great potential in many research and clinical settings. The mechanisms underlying the therapeutic effects of MSCs have been studied previously and the paracrine effects elicited by their production of various growth factors and cytokines were recognized as being crucial. However, the molecular controls that govern these paracrine effects remain poorly understood. To elucidate the molecular regulators of this process, we performed a global knockdown of microRNAs (miRNAs) in human adipose-derived mesenchymal stem cells (hADSCs) by inhibiting DGCR8, a key protein in miRNA biogenesis. Global disruption of miRNA biogenesis in hADSCs caused dramatic changes in the expression of subsets of growth factors and cytokines. By performing an extensive bioinformatic analysis, we were able to associate numerous putative miRNAs with these genes. Taken together, our results strongly suggest that miRNAs are essential for the production of growth factors and cytokines in hADSCs.

Identification of Differentially Expressed Genes in Human Mesenchymal Stem Cell-Derived Neurons

  • Heo, Ji-Hye;Cho, Kyung-Jin;Choi, Dal-Woong;Kim, Suhng-Wook
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have greater potential for immediate clinical and toxicological applications, due to their ability to self-renew, proliferate, and differentiate into a variety of cell types. To identify novel candidate genes that were specifically expressed during transdifferentiation of human MSCs to neuronal cells, we performed a differential expression analysis with random priming approach using annealing control primer-based differential display reverse transcription-polymerase chain reaction approach. We identified genes for acyl-CoA thioesterase, tissue inhibitor of metalloproteinases-1, brain glycogen phosphorylase, ubiquitin C-terminal hydrolase and aldehyde reductase were up-regualted, whereas genes for transgelin and heparan sulfate proteoglycan were down-regulated in MSC-derived neurons. These differentially expressed genes may have potential role in regulation of neurogenesis. This study could be applied to environmental toxicology in the field of testing the toxicity of a chemical or a physical agent.

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

Establishment of High Throughput Screening System Using Human Umbilical Cord-derived Mesenchymal Stem Cells

  • Park, Eu-Gene;Cho, Tae-Jun;Oh, Keun-Hee;Kwon, Soon-Keun;Lee, Dong-Sup;Park, Seung-Bum;Cho, Jae-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.43-50
    • /
    • 2012
  • The use of high throughput screening (HTS) in drug development is principally for the selection new drug candidates or screening of chemical toxicants. This system minimizes the experimental environment and allows for the screening of candidates at the same time. Umbilical cord-derived stem cells have some of the characteristics of fetal stem cell and have several advantages such as the ease with which they can be obtained and lack of ethical issues. To establish a HTS system, optimized conditions that mimic typical cell culture conditions in a minimal space such as 96 well plates are needed for stem cell growth. We have thus established a novel HTS system using human umbilical cord derived-mesenchymal stem cells (hUC-MSCs). To determine the optimal cell number, hUC-MSCs were serially diluted and seeded at 750, 500, 200 and 100 cells per well on 96 well plates. The maintenance efficiencies of these dilutions were compared for 3, 7, 9, and 14 days. The fetal bovine serum (FBS) concentration (20, 10, 5 and 1%) and the cell numbers (750, 500 and 200 cells/well) were compared for 3, 5 and 7 days. In addition, we evaluated the optimal conditions for cell cycle block. These four independent optimization experiments were conducted using an MTT assay. In the results, the optimal conditions for a HTS system using hUC-MSCs were determined to be 300 cell/well cultured for 8 days with 1 or 5% FBS. In addition, we demonstrated that the optimal conditions for a cell cycle block in this culture system are 48 hours in the absence of FBS. In addition, we selected four types of novel small molecule candidates using our HTS system which demonstrates the feasibility if using hUC-MSCs for this type of screen. Moreover, the four candidate compounds can be tested for stem cell research application.