References
- Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J. and Wang, C. Y. (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35-42. https://doi.org/10.1038/nm.3028
- da Silva Meirelles, L., Chagastelles, P. C. and Nardi, N. B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204-2213. https://doi.org/10.1242/jcs.02932
- Brighton, C. T. and Hunt, R. M. (1991) Early histological and ultrastructural changes in medullary fracture callus. J. Bone Joint Surg. Am. 73, 832-847.
- Brighton, C. T. and Hunt, R. M. (1997) Early histologic and ultrastructural changes in microvessels of periosteal callus. J. Orthop. Trauma 11, 244-253. https://doi.org/10.1097/00005131-199705000-00002
- Kopen, G. C., Prockop, D. J. and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U. S. A. 96, 10711-10716. https://doi.org/10.1073/pnas.96.19.10711
- Mackenzie, T. C. and Flake, A. W. (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol. Dis. 27, 601-604. https://doi.org/10.1006/bcmd.2001.0424
- Prockop, D. J. (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17, 939-946. https://doi.org/10.1038/mt.2009.62
- Caplan, A. I. (2009) Why are MSCs therapeutic? New data: new insight. J. Pathol. 217, 318-324. https://doi.org/10.1002/path.2469
- Salgado, A. J., Reis, R. L., Sousa, N. J. and Gimble, J. M. (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 5, 103-110. https://doi.org/10.2174/157488810791268564
- Chen, L., Tredget, E. E., Wu, P. Y. and Wu, Y. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886. https://doi.org/10.1371/journal.pone.0001886
- Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678-685. https://doi.org/10.1161/01.RES.0000118601.37875.AC
- Fabian, M. R. and Sonenberg, N. (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586-593. https://doi.org/10.1038/nsmb.2296
- Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N. and Shiekhattar, R. (2004) The Microprocessor complex mediates the genesis of micro RNAs. Nature 432, 235-240. https://doi.org/10.1038/nature03120
- Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235. https://doi.org/10.1038/nature03049
- Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H. and Kim, V. N. (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016-3027. https://doi.org/10.1101/gad.1262504
- Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366. https://doi.org/10.1038/35053110
- Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T. and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838. https://doi.org/10.1126/science.1062961
- Guo, L., Zhao, R. C. and Wu, Y. (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp. Hematol. 39, 608-616. https://doi.org/10.1016/j.exphem.2011.01.011
- Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317. https://doi.org/10.1080/14653240600855905
- Han, J., Pedersen, J. S., Kwon, S. C., Belair, C. D., Kim, Y. K., Yeom, K. H., Yang, W. Y., Haussler, D., Blelloch, R. and Kim, V. N. (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84. https://doi.org/10.1016/j.cell.2008.10.053
- Wang, Y., Medvid, R., Melton, C., Jaenisch, R. and Blelloch, R. (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380-385. https://doi.org/10.1038/ng1969
- Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787-798. https://doi.org/10.1016/S0092-8674(03)01018-3
- Suh, N. and Blelloch, R. (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653-1661. https://doi.org/10.1242/dev.056234
- Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P. and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature 455, 64-71. https://doi.org/10.1038/nature07242
- Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63. https://doi.org/10.1038/nature07228
- Guo, H., Ingolia, N. T., Weissman, J. S. and Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840. https://doi.org/10.1038/nature09267
- Haider, H., Jiang, S., Idris, N. M. and Ashraf, M. (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ. Res. 103, 1300-1308. https://doi.org/10.1161/CIRCRESAHA.108.186742
- Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228. https://doi.org/10.1089/107632701300062859
- Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13, 4279-4295. https://doi.org/10.1091/mbc.E02-02-0105
Cited by
- Wall teichoic acid is an essential component of Staphylococcus aureus for the induction of human dendritic cell maturation vol.81, 2017, https://doi.org/10.1016/j.molimm.2016.12.008
- Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells vol.50, pp.11, 2017, https://doi.org/10.5483/BMBRep.2017.50.11.174