DOI QR코드

DOI QR Code

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu (Department of Physiology, Pusan National University School of Medicine) ;
  • Kwon, Yang Woo (Department of Physiology, Pusan National University School of Medicine) ;
  • Lee, Tae Wook (Department of Physiology, Pusan National University School of Medicine) ;
  • Park, Gyu Tae (Department of Physiology, Pusan National University School of Medicine) ;
  • Kim, Jae Ho (Department of Physiology, Pusan National University School of Medicine)
  • Received : 2018.10.31
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
  2. Tong Z, Solanki A, Hamilos A, Levy O, Wen K, Yin X, et al. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J. 2015;34(8):987-1008. https://doi.org/10.15252/embj.201490756
  3. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557(7705):335-42. https://doi.org/10.1038/s41586-018-0089-z
  4. Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323-37. https://doi.org/10.1007/s10439-013-0859-6
  5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54. https://doi.org/10.1038/emm.2013.94
  6. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013;4:201.
  7. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng B Rev. 2017;23(6):515-28.
  8. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829-48. https://doi.org/10.3727/096368915X689622
  9. Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol. 2018;102(9):3981-94. https://doi.org/10.1007/s00253-018-8912-x
  10. Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589-603.
  11. Watson RA, Tsakok MT, Yeung TM. Oligodendrocyte progenitor cells: a missed opportunity. J Neurotrauma. 2012;29(16):2593-4. https://doi.org/10.1089/neu.2011.2293
  12. Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem cell reports. 2015;4(5):860-72. https://doi.org/10.1016/j.stemcr.2015.04.005
  13. Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell. 2014;14(1):121-30. https://doi.org/10.1016/j.stem.2013.11.014
  14. Boyd AS, Rodrigues NP, Lui KO, Fu X, Xu Y. Concise review: immune recognition of induced pluripotent stem cells. Stem Cells. 2012;30(5):797-803. https://doi.org/10.1002/stem.1066
  15. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76. https://doi.org/10.1016/j.cell.2006.07.024
  16. Hu MS, Leavitt T, Malhotra S, Duscher D, Pollhammer MS, Walmsley GG, et al. Stem cell-based therapeutics to improve wound healing. Plast Surg Int 2015;2015:383581.
  17. Li Y-C, Zhu K, Young T-H. Induced pluripotent stem cells, form in vitro tissue engineering to in vivo allogeneic transplantation. Journal of thoracic disease. 2017;9(3):455-9. https://doi.org/10.21037/jtd.2017.02.77
  18. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038-46. https://doi.org/10.1056/NEJMoa1608368
  19. Medvedev SP, Shevchenko AI, Zakian SM. Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Nat. 2010;2(2):18-28. https://doi.org/10.32607/20758251-2010-2-2-18-27
  20. Czyz J, Wobus A. Embryonic stem cell differentiation: the role of extracellular factors. Differentiation; research in biological diversity. 2001;68(4-5):167-74. https://doi.org/10.1046/j.1432-0436.2001.680404.x
  21. Qin Y, Guan J, Zhang C. Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J. 2014;90(1069):643-7. https://doi.org/10.1136/postgradmedj-2013-132387
  22. Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6(8A):32-52.
  23. Lee JS, Kim ME, Seon JK, Kang JY, Yoon TR, Park Y-D, et al. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways. Stem Cell Res. 2018;26:28-35. https://doi.org/10.1016/j.scr.2017.11.016
  24. Chang SC, Chung HY, Tai CL, Chen PK, Lin TM, Jeng LB. Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems. J Biomed Mater Res A. 2010;94(2):433-41.
  25. Burastero G, Scarfi S, Ferraris C, Fresia C, Sessarego N, Fruscione F, et al. The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone. 2010;47(1):117-26. https://doi.org/10.1016/j.bone.2010.03.023
  26. Hanson SE, Bentz ML, Hematti P. Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg. 2010;125(2):510-6. https://doi.org/10.1097/PRS.0b013e3181c722bb
  27. Heo SC, Shin WC, Lee MJ, Kim BR, Jang IH, Choi EJ, et al. Periostin accelerates bone healing mediated by human mesenchymal stem cellembedded hydroxyapatite/tricalcium phosphate scaffold. PLoS One. 2015;10(3):e0116698. https://doi.org/10.1371/journal.pone.0116698
  28. Kim BR, Jang IH, Shin SH, Kwon YW, Heo SC, Choi EJ, et al. Therapeutic angiogenesis in a murine model of limb ischemia by recombinant periostin and its fasciclin I domain. Biochim Biophys Acta. 2014;1842(9):1324-32. https://doi.org/10.1016/j.bbadis.2014.05.004
  29. Kim BR, Kwon YW, Park GT, Choi EJ, Seo JK, Jang IH, et al. Identification of a novel angiogenic peptide from periostin. PLoS One. 2017;12(11):e0187464. https://doi.org/10.1371/journal.pone.0187464
  30. Kwon YW, Heo SC, Lee TW, Park GT, Yoon JW, Jang IH, et al. N-acetylated prolineglycine-proline accelerates cutaneous wound healing and neovascularization by human endothelial progenitor cells. Sci Rep. 2017;7:43057. https://doi.org/10.1038/srep43057
  31. Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. https://doi.org/10.4103/2277-9175.98152
  32. Long J, Kim H, Kim D, Lee JB, Kim DH. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B. 2017;5(13):2375-9. https://doi.org/10.1039/C6TB03130G
  33. Baek S, Oh J, Song J, Choi H, Yoo J, Park GY, et al. Generation of integrationfree induced neurons using graphene oxide-Polyethylenimine. Small (Weinheim an der Bergstrasse, Germany). 2017;13(5).
  34. Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;79-80:3-18. https://doi.org/10.1016/j.addr.2014.06.005
  35. Evans ND, Gentleman E, Polak JM. Scaffolds for stem cells. Mater Today. 2006;9(12):26-33.
  36. Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials - biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev. 2016;97:260-9. https://doi.org/10.1016/j.addr.2015.11.019
  37. Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater. 2013;2(1):57-71. https://doi.org/10.1002/adhm.201200197
  38. Dash BC, Xu Z, Lin L, Koo A, Ndon S, Berthiaume F, et al. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering (Basel). 2018;5(1).
  39. Kook YJ, Lee DH, Song JE, Tripathy N, Jeon YS, Jeon HY, et al. Osteogenesis evaluation of duck's feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomater Res. 2017;21:2. https://doi.org/10.1186/s40824-017-0088-4
  40. Ewa-Choy YW, Pingguan-Murphy B, Abdul-Ghani NA, Jahendran J, Chua KH. Effect of alginate concentration on chondrogenesis of co-cultured human adipose-derived stem cells and nasal chondrocytes: a biological study. Biomater Res. 2017;21:19. https://doi.org/10.1186/s40824-017-0105-7
  41. Yao S, Liu X, Wang X, Merolli A, Chen X, Cui F. Directing neural stem cell fate with biomaterial parameters for injured brain regeneration. Progress in Natural Science: Materials International. 2013;23(2):103-12. https://doi.org/10.1016/j.pnsc.2013.02.009
  42. Zhang Z, Gupte MJ, Ma PX. Biomaterials and stem cells for tissue engineering. Expert Opin Biol Ther. 2013;13(4):527-40. https://doi.org/10.1517/14712598.2013.756468
  43. Ma H, Hu J, Ma PX. Polymer scaffolds for small-diameter vascular tissue engineering. Adv Funct Mater. 2010;20(17):2833-41. https://doi.org/10.1002/adfm.201000922
  44. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102. https://doi.org/10.1088/1758-5090/7/4/044102
  45. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422-34. https://doi.org/10.1016/j.biotechadv.2015.12.011
  46. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106(6):963-9. https://doi.org/10.1002/bit.22762
  47. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139-47. https://doi.org/10.1023/B:BMMD.0000031751.67267.9f
  48. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. https://doi.org/10.1038/nbt.2958
  49. Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002;54(1):13-36. https://doi.org/10.1016/S0169-409X(01)00240-X
  50. Mattimore JP, Groff RE, Burg T, Pepper ME, editors. A general purpose driver board for the HP26 ink-jet cartridge with applications to bioprinting. Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon); 2010 18-21 March 2010.
  51. Cui X, Boland T, D'Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation. 2012;6(2):149-55. https://doi.org/10.2174/187221112800672949
  52. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:271. https://doi.org/10.1186/s12967-016-1028-0
  53. Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J. 2017;12(8).
  54. Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2014;46(3):342-8. https://doi.org/10.1093/ejcts/ezu148
  55. Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechnol. 2013;14(1):91-7. https://doi.org/10.2174/138920113804805368
  56. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22:11. https://doi.org/10.1186/s40824-018-0122-1
  57. Zorlutuna P, Vrana NE, Khademhosseini A. The expanding world of tissue engineering: the building blocks and new applications of tissue engineered constructs. IEEE Rev Biomed Eng. 2013;6:47-62. https://doi.org/10.1109/RBME.2012.2233468
  58. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-53. https://doi.org/10.1016/j.biomaterials.2008.04.023
  59. Chen CC, Yu J, Ng HY, Lee AK, Chen CC, Chen YS, et al. The physicochemical properties of Decellularized extracellular matrix-coated 3D printed poly(epsilon-caprolactone) nerve conduits for promoting Schwann cells proliferation and differentiation. Materials (Basel). 2018;11(9).
  60. Dolati F, Yu Y, Zhang Y, De Jesus AM, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology. 2014;25(14):145101. https://doi.org/10.1088/0957-4484/25/14/145101
  61. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D Bioprinting for vascularized tissue fabrication. Ann Biomed Eng. 2017;45(1):132-47. https://doi.org/10.1007/s10439-016-1653-z
  62. Jeon J, Lee MS, Yang HS. Differentiated osteoblasts derived decellularized extracellular matrix to promote osteogenic differentiation. Biomater Res. 2018;22:4. https://doi.org/10.1186/s40824-018-0115-0
  63. Melchiorri AJ, Hibino N, Best CA, Yi T, Lee YU, Kraynak CA, et al. 3D-printed biodegradable polymeric vascular grafts. Adv Healthc Mater. 2016;5(3):319-25. https://doi.org/10.1002/adhm.201500725
  64. Weiss P, Obadia L, Magne D, Bourges X, Rau C, Weitkamp T, et al. Synchrotron X-ray microtomography (on a micron scale) provides threedimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials. 2003;24(25):4591-601. https://doi.org/10.1016/S0142-9612(03)00335-1
  65. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026-34. https://doi.org/10.1016/j.biomaterials.2014.01.064
  66. Teixeira BN, Aprile P, Mendonca RH, Kelly DJ, Thire R. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater. 2018.
  67. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 3D Bioprinting human chondrocytes with Nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-96. https://doi.org/10.1021/acs.biomac.5b00188
  68. Jariwala SH, Lewis GS, Bushman ZJ, Adair JH, Donahue HJ. 3D Printing of Personalized Artificial Bone Scaffolds. 3D Print Addit Manuf. 2015;2(2):56-64. https://doi.org/10.1089/3dp.2015.0001
  69. Lee SH, Jeong SK, Ahn SK. An update of the defensive barrier function of skin. Yonsei Med J. 2006;47(3):293-306. https://doi.org/10.3349/ymj.2006.47.3.293
  70. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121(3):860-77. https://doi.org/10.1097/01.prs.0000299922.96006.24
  71. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100-7. https://doi.org/10.1016/j.biomaterials.2008.06.028
  72. Ng WL, Wang S, Yeong WY, Skin Bioprinting NMW. Impending reality or fantasy? Trends Biotechnol. 2016;34(9):689-99. https://doi.org/10.1016/j.tibtech.2016.04.006
  73. Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38-53. https://doi.org/10.1016/j.biomaterials.2018.03.040

Cited by

  1. Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy Ameliorates Nonalcoholic Fatty Liver Disease in Obese Type 2 Diabetic Mice vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8628027
  2. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect vol.20, pp.10, 2018, https://doi.org/10.3390/ijms20102406
  3. Mesenchymal Stromal Cell-Based Therapy: New Perspectives and Challenges vol.8, pp.5, 2018, https://doi.org/10.3390/jcm8050626
  4. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality vol.14, pp.6, 2018, https://doi.org/10.1371/journal.pone.0218404
  5. Aging: A cell source limiting factor in tissue engineering vol.11, pp.10, 2018, https://doi.org/10.4252/wjsc.v11.i10.787
  6. Autologous Platelet-Rich Plasma (CuteCell PRP) Safely Boosts In Vitro Human Fibroblast Expansion vol.25, pp.21, 2018, https://doi.org/10.1089/ten.tea.2018.0335
  7. Regenerative Potential of Platelet-Rich Fibrin Releasate Combined with Adipose Tissue–Derived Stem Cells in a Rat Sciatic Nerve Injury Model vol.29, pp.None, 2018, https://doi.org/10.1177/0963689720919438
  8. Intra-articular Administration of Allogeneic Adipose Derived MSCs Reduces Pain and Lameness in Dogs With Hip Osteoarthritis: A Double Blinded, Randomized, Placebo Controlled Pilot Study vol.7, pp.None, 2018, https://doi.org/10.3389/fvets.2020.00570
  9. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications vol.16, pp.1, 2018, https://doi.org/10.1007/s12015-019-09935-x
  10. Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration vol.12, pp.2, 2020, https://doi.org/10.3390/pharmaceutics12020095
  11. Mesenchymal stromal cell‐derived factors promote the colonization of collagen 3D scaffolds with human skin cells vol.24, pp.17, 2018, https://doi.org/10.1111/jcmm.15507
  12. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs vol.84, pp.None, 2020, https://doi.org/10.1016/j.medengphy.2020.07.018
  13. 3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications vol.21, pp.20, 2020, https://doi.org/10.3390/ijms21207757
  14. Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation vol.6, pp.10, 2020, https://doi.org/10.1021/acsbiomaterials.0c00844
  15. Stem Cell-Derived Nanovesicles: A Novel Cell-Free Therapy for Wound Healing vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/1285087
  16. Regenerative Engineering: Current Applications and Future Perspectives vol.8, pp.None, 2018, https://doi.org/10.3389/fsurg.2021.731031
  17. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.723236
  18. Development of pH-Responsive Polymer Coating as an Alternative to Enzyme-Based Stem Cell Dissociation for Cell Therapy vol.14, pp.3, 2021, https://doi.org/10.3390/ma14030491
  19. Advances in gelatin-based hydrogels for wound management vol.9, pp.6, 2018, https://doi.org/10.1039/d0tb02582h
  20. Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration vol.11, pp.1, 2018, https://doi.org/10.1007/s40089-020-00318-6
  21. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs vol.4, pp.4, 2021, https://doi.org/10.1002/adtp.202000245
  22. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective vol.26, pp.9, 2018, https://doi.org/10.3390/molecules26092518
  23. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration vol.27, pp.13, 2018, https://doi.org/10.1089/ten.tea.2020.0158
  24. Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem cell pluripotency vol.12, pp.None, 2021, https://doi.org/10.1016/j.mtbio.2021.100153
  25. Employing Extracellular Matrix-Based Tissue Engineering Strategies for Age-Dependent Tissue Degenerations vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179367
  26. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction vol.13, pp.4, 2018, https://doi.org/10.1088/1758-5090/ac1e78
  27. Cardiac Tissue Engineering for the Treatment of Myocardial Infarction vol.8, pp.11, 2021, https://doi.org/10.3390/jcdd8110153
  28. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine vol.8, pp.23, 2018, https://doi.org/10.1002/advs.202101837
  29. Cisplatin induces differentiation in teratomas derived from pluripotent stem cells vol.18, pp.None, 2018, https://doi.org/10.1016/j.reth.2021.05.005
  30. Human nasal septal chondrocytes (NSCs) preconditioned on NSC-derived matrix improve their chondrogenic potential vol.25, pp.1, 2018, https://doi.org/10.1186/s40824-021-00211-z
  31. Advances in Use of Nanomaterials for Musculoskeletal Regeneration vol.13, pp.12, 2018, https://doi.org/10.3390/pharmaceutics13121994
  32. Comparison of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside-induced proliferation and differentiation of dental pulp stem cells in 2D and 3D culture systems—gene analysis vol.17, pp.1, 2022, https://doi.org/10.1016/j.jds.2021.09.021