Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.8.106

Global knockdown of microRNAs affects the expression of growth factors and cytokines in human adipose-derived mesenchymal stem cells  

Park, Seul-Ki (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
Lee, Jung Shin (Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine)
Choi, Eun Kyung (Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine)
You, Dalsan (Department of Urology, Asan Medical Center, University of Ulsan College of Medicine)
Kim, Choung-Soo (Department of Urology, Asan Medical Center, University of Ulsan College of Medicine)
Suh, Nayoung (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
Publication Information
BMB Reports / v.47, no.8, 2014 , pp. 469-474 More about this Journal
Abstract
Cell therapies utilizing mesenchymal stem cells (MSCs) have a great potential in many research and clinical settings. The mechanisms underlying the therapeutic effects of MSCs have been studied previously and the paracrine effects elicited by their production of various growth factors and cytokines were recognized as being crucial. However, the molecular controls that govern these paracrine effects remain poorly understood. To elucidate the molecular regulators of this process, we performed a global knockdown of microRNAs (miRNAs) in human adipose-derived mesenchymal stem cells (hADSCs) by inhibiting DGCR8, a key protein in miRNA biogenesis. Global disruption of miRNA biogenesis in hADSCs caused dramatic changes in the expression of subsets of growth factors and cytokines. By performing an extensive bioinformatic analysis, we were able to associate numerous putative miRNAs with these genes. Taken together, our results strongly suggest that miRNAs are essential for the production of growth factors and cytokines in hADSCs.
Keywords
Cytokines; DGCR8; Growth factors; Human adipose-derived mesenchymal stem cell; MicroRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P. and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature 455, 64-71.   DOI   ScienceOn
2 Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787-798.   DOI   ScienceOn
3 Suh, N. and Blelloch, R. (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653-1661.   DOI   ScienceOn
4 Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63.   DOI   ScienceOn
5 Guo, H., Ingolia, N. T., Weissman, J. S. and Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840.   DOI   ScienceOn
6 Haider, H., Jiang, S., Idris, N. M. and Ashraf, M. (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ. Res. 103, 1300-1308.   DOI   ScienceOn
7 Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228.   DOI   ScienceOn
8 Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13, 4279-4295.   DOI   ScienceOn
9 Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.   DOI   ScienceOn
10 Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.   DOI   ScienceOn
11 Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317.   DOI   ScienceOn
12 Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H. and Kim, V. N. (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016-3027.   DOI   ScienceOn
13 Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T. and Zamore, P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838.   DOI   ScienceOn
14 Guo, L., Zhao, R. C. and Wu, Y. (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp. Hematol. 39, 608-616.   DOI   ScienceOn
15 Han, J., Pedersen, J. S., Kwon, S. C., Belair, C. D., Kim, Y. K., Yeom, K. H., Yang, W. Y., Haussler, D., Blelloch, R. and Kim, V. N. (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84.   DOI   ScienceOn
16 Caplan, A. I. (2009) Why are MSCs therapeutic? New data: new insight. J. Pathol. 217, 318-324.   DOI   ScienceOn
17 Kopen, G. C., Prockop, D. J. and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U. S. A. 96, 10711-10716.   DOI   ScienceOn
18 Chen, L., Tredget, E. E., Wu, P. Y. and Wu, Y. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886.   DOI   ScienceOn
19 Mackenzie, T. C. and Flake, A. W. (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol. Dis. 27, 601-604.   DOI   ScienceOn
20 Prockop, D. J. (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17, 939-946.   DOI   ScienceOn
21 Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678-685.   DOI   ScienceOn
22 Fabian, M. R. and Sonenberg, N. (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586-593.   DOI   ScienceOn
23 Brighton, C. T. and Hunt, R. M. (1997) Early histologic and ultrastructural changes in microvessels of periosteal callus. J. Orthop. Trauma 11, 244-253.   DOI   ScienceOn
24 da Silva Meirelles, L., Chagastelles, P. C. and Nardi, N. B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204-2213.   DOI   ScienceOn
25 Brighton, C. T. and Hunt, R. M. (1991) Early histological and ultrastructural changes in medullary fracture callus. J. Bone Joint Surg. Am. 73, 832-847.
26 Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J. and Wang, C. Y. (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35-42.   DOI   ScienceOn
27 Wang, Y., Medvid, R., Melton, C., Jaenisch, R. and Blelloch, R. (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380-385.   DOI   ScienceOn
28 Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N. and Shiekhattar, R. (2004) The Microprocessor complex mediates the genesis of micro RNAs. Nature 432, 235-240.   DOI   ScienceOn
29 Salgado, A. J., Reis, R. L., Sousa, N. J. and Gimble, J. M. (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 5, 103-110.   DOI