• Title/Summary/Keyword: Human dermal fibroblasts

Search Result 207, Processing Time 0.02 seconds

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.

Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts - Asafoetida reverses senescence in fibroblasts -

  • Moghadam, Farshad Homayouni;Mesbah-Ardakani, Mehrnaz;Nasr-Esfahani, Mohammad Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Objectives: Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods: Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to $H_2O_2$, and the incidence of senescence was recognized by using cytochemical staining for the activity of ${\beta}$-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results: Our experiments show that asafetida in concentrations ranging from $5{\times}10^{-8}$ to $10^{-7}g/mL$ has revitalizing effects on senescent fibroblasts and significantly reduces the ${\beta}$-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than $5{\times}10^{-7}g/mL$, asafetida is toxic for cells and induces cell death. Conclusion: The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.

Anti-Photoaging Effects of Angelica acutiloba Root Ethanol Extract in Human Dermal Fibroblasts

  • Park, Min Ah;Sim, Mi Ja;Kim, Young Chul
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.125-134
    • /
    • 2017
  • The effects that ultraviolet rays elicit on collagen synthesis and degradation are the most common causes of wrinkle formation and photo-aging in skin. The objectives of this study were to evaluate the effects of Angelica acutiloba root ethanol extract (AAEE) to promote collagen synthesis and inhibit collagen degradation in human dermal fibroblasts. By examining total polyphenol and flavonoid contents, electron donating ability, radical scavenging activity, and superoxide dismutase-like activity, we found that AAEE exhibited fairly good antioxidant activity. Treatment with AAEE significantly increased type I procollagen production by cultured fibroblasts, as well as reduced ultraviolet-induced matrix metalloproteinase-1 (MMP-1) expression and MMP-2 activity in a dose-dependent manner (p < 0.05). In addition, AAEE significantly increased TIMP-1 mRNA expression (p < 0.05), although without an associated dose-dependent increase in TIMP-1 protein expression. In summary, we suggest that AAEE may be a potentially effective agent for the prevention or alleviation of skin-wrinkle formation induced by ultraviolet rays.

Effect of Progesterone on Cultured Human Dermal Fibroblast (배양된 인체진피섬유모세포의 증식에 대한 황체호르몬의 영향)

  • Kwon, Soon Sung;Oh, Myung June;Lee, Jin Hee;Park, Jong Lim;Chang, Hak;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.420-425
    • /
    • 2007
  • Purpose:The mechanism of scar formation is not fully understood. Fibroblast is an important cell in wound healing process. We experienced a patient who was taking progesterone orally. Upper blepharoplasty was performed on her but, wound healing was delayed. We hypothesized that progesterone was the cause of delayed wound healing and fibroblast proliferation inhibition. We investigated the effect of progesterone in vitro on human dermal fibroblasts to study the effects on fibroblast proliferation. Methods: Human dermal fibroblasts from four persons were cultured initially. Progesterone is mixed to them at various concentrations, and fibroblast cell count was measured by MTT assay method at 570 nm. We confirmed that progesterone has some inhibitory effect on fibroblast proliferation and maximal inhibitory concentration of progesterone was determined. Then fibroblasts from a total of nineteen persons were cultured and the effects of progesterone were studied. Results: The initial study showed the maximal inhibitory concentration of progesterone to be $50{\mu}g/ml$. The main study showed that progesterone had 70.9% inhibitory effect on human dermal fibroblast in vitro. Conclusion: Progesterone has inhibitory effect on cultured human dermal fibroblast proliferation in vitro.

Effects of Pharmacological Modulators of $Ca^{2+}-activated\;K^+$ Channels on Proliferation of Human Dermal Fibroblast

  • Yun, Ji-Hyun;Kim, Tae-Ho;Myung, Soon-Chul;Bang, Hyo-Weon;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Employing electrophysiological and cell proliferation assay techniques, we studied the effects of $Ca^{2+}$ -activated $K^+$ channel modulators on the proliferation of human dermal fibroblasts, which is important in wound healing. Macroscopic voltage-dependent outward $K^+$ currents were found at about -40 mV stepped from a holding potential of -70 mV. The amplitude of $K^+$ current was increased by NS1619, a specific large-conductance $Ca^{2+}$-activated $K^+$ (BK) channel activator, but decreased by iberiotoxin (IBTX), a specific BK channel inhibitor. To investigate the presence of an intermediate-conductance $Ca^{2+}$-activated $K^+$ (IK) channels, we pretreated the fibroblasts with low dose of TEA to block BK currents, and added 1-EBIO (an IK activator). 1-EBIO recovered the currents inhibited by TEA. When various $Ca^{2+}$-activated $K^+$ channel modulators were added into culture media for 1∼3 days, NS1619 or 1-EBIO inhibited the cell proliferation. On the other hand, IBTX, clotrimazole or apamin, a small conductance $Ca^{2+}$-activated $K^+$ channel (SK) inhibitor, increased it. These results suggest that BK, IK, and SK channels might be involved in the proliferation of human dermal fibroblasts, which is inversely related to the channel activation.

The Effects of GamiTakliSodocyum on Wound Healing (加味托里消毒飮이 瘡傷 治癒에 미치는 影響)

  • Seo, Hyung-Sik;Roh, Seok-Seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.14 no.2
    • /
    • pp.89-111
    • /
    • 2001
  • In order to investigate the effects of GamiTakliSodocyum(GTS) on wound healing, migration of epidermis, formation of granulation tissue and number of capillary within the granulation tissue were measured in diabetic mice by local application and NZW rabbits by local application and prescription of medicine in vivo, and proliferation of human epidermal keratinocytes and human dermal fibroblasts and composition of extracellular matrix were measured in vitro. The results were summerized as follows. 1. $2\%,\;10\%$ GTS remarkably increased migration of epidermis in diabetic mice by local application. 2. $2\%,\;10\%$ GTS remarkably increased formation of granulation tissue, number of neovascularization within the granulation tissue in diabetic mice by local application. 3. 5\%,\;10\%$ GTS remarkably increased migration of epidermis in NZW rabbits by local application. 4. $5\%,\;10\%$ GTS remarkably increased fonnation of granulation tissue, number of neovascularization within the granulation tissue in NZW rabbits by local application. 5. $5\%,\;10\%$ GTS increased migration of epidennis in NZW rabbits by prescription of medicine. 6. $5\%,\;10\%$ GTS increased formation of granulation tissue, number of neovascularization within the granulation tissue in NZW rabbits by prescription of medicine. 7. GTS didn't show effect on the proliferation of human epidermal keratinocytes. 8. GTS increased the proliferation of cultured human dermal fibroblasts. 9. GTS increased the expression of procoliagen ${\alpha}1(I) mRNA in cultured human dermal fibroblasts. 10. GTS increased the expression of fibronectin mRNA in cultured human dennal fibroblasts according to dosage of GTS using northern blot hybridization but didn't increase, using RT-PCR. From the above results, it is conclude that GTS might use on wound healing.

  • PDF

Ethacrynic Acid and Citral Suppressed the All Trans Retinoid-Induced Monocyte Chemoattractant Protein-1 Production in Human Dermal Fibroblasts

  • Kim, Kwang-Mi;Noh, Min-Soo;Kim, Soo-Hyun;Park, Mi-Kyung;Lee, Hye-Ja;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • Skin irritation caused by retinol and retinoic acid results in mild erythema called as retinoid dermatitis. To develop compounds modulating the retinoid dermatitis, we tried to establish the screening method for retinoid dermatitis. At first we examined the inflammatory cytokine profile in neonatal human dermal fibroblasts which are known to be one of main site of retinoid action. As a result, interleukin-8 (IL-8) and monocytes chemoattractant protein-1 (MCP-1) were significantly produced by all trans retinoic acid (ATRA) and all trans retinol (ATROL) in dermal fibroblasts. Especially the production of MCP-1 was more than that of IL-8. The production of MCP-1 by retinoid was dose-dependently increased, continuing up to 24 hrs. After then using ethacrynic acid (ECA) known to reduce mouse ear edema induced by ATRA, we checked whether ECA suppressed the production of MCP-1. As a result, ECA effectively suppressed the production of MCP-1 in the ATRA- or ATROL-treated-fibroblasts. These results suggested that screening method effectively reflects the in vivo anti-inflammatory activity of ECA. It was reported that citral inhibited the enzyme involved in the conversion of ATROL to ATRA. We showed that citral suppressed the production of MCP-1 in ATROL-treated fibroblasts. We expect these finding might be helpful to find useful compounds modulating the side effects of retinoid or retinoid dermatitis.

Effect of Oncostatin M on Proliferation and Matrix Synthesis of Dermal Fibroblasts (Oncostatin M이 피부섬유모세포의 증식과 기질생성에 미치는 영향)

  • Chun, Kyung Wook;Lim, Hyung Woo;Han, Seung-Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Purpose: Oncostatin M(OSM) is a multifunctional cytokine that belongs to the interleukin(IL)-6 family. Although there have been a number of studies that focused on the role and mechanism of OSM in various organs and tissues, there are few reports on its effect on wound healing. The final purpose of this project is to evaluate the effect of OSM on wound healing. This pilot study was designed to investigate the effect of OSM on proliferation and matrix synthesis of human dermal fibroblasts, which are the major components of the wound healing. Methods: Excess skin that was obtained from patients who underwent skin grafts, was used for this study. From this material, fibroblasts were isolated and cultured. The cultured fibroblasts were treated with one of four concentrations of OSM. The OSM concentrations used were 0, 50, 100, and 200 ng/ml, respectively. After the OSM treatment, cell proliferation was determined by the MTT assay, collagen synthesis by the C1CP method, GAG levels by the Blyscan Dye method. The parameter levels of each group were compared. Results: OSM treatment increased all the components tested in the study. In particular, cell proliferation, GAG synthesis demonstrated statistically significant increases(p<0.05 in the Mann-Whitney U-test). The highest increase in all the components was obtained at a 100 ng/ml concentration of OSM.Conclusion: The results of the present study indicate that OSM stimulates proliferation and matrix synthesis of human dermal fibroblast and the optimal concentration for wound healing is 100 ng/mL.

Extract of Ettlia sp. YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblasts

  • Lee, Jeong-Ju;An, Sungkwan;Kim, Ki Bbeum;Heo, Jina;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.775-783
    • /
    • 2016
  • The identification of novel reagents that exert a biological ultraviolet (UV)-protective effect in skin cells represents an important strategy for preventing UV-induced skin aging. To this end, we investigated the potential protective effects of Ettlia sp. YC001 extracts against UV-induced cellular damage in normal human dermal fibroblasts (NHDFs). We generated four different extracts from Ettlia sp. YC001, and found that they exhibit low cytotoxicity in NHDFs. The ethyl acetate extract of Ettlia sp. YC001 markedly decreased UVB-induced cytotoxicity. Additionally, the ethyl acetate extract significantly inhibited the production of hydrogen peroxide-induced reactive oxygen species. Moreover, it inhibited UVB-induced thymine dimers, as confirmed by luciferase assay and thymine dimer dot-blot assay. Thus, the study findings suggest Ettlia sp. YC001 extract as a novel photoprotective reagent on UVB-induced cell dysfunctions in NHDFs.