• 제목/요약/키워드: Hot electron

검색결과 510건 처리시간 0.024초

전자선 조사와 열압축공정을 이용한 PAN 나노섬유의 안정화 및 특성분석 (Stabilization of PAN Nanofibers Using Electron Beam Irradiation and Thermal Compression Technique)

  • 김두영;전준표;신혜경;강필현
    • 방사선산업학회지
    • /
    • 제6권1호
    • /
    • pp.55-59
    • /
    • 2012
  • Polyacrylonitrile (PAN)-based carbon fibers have been widely used due to their unique chemical, electrical, and mechanical properties. Electron beam irradiation has been extensively employed as means of altering properties of polymeric materials. Electron beam irradiation can induce chemical reactions in materials without any catalyst. Electron beam irradiation may be useful in accelerating the thermal compression stabilization of PAN nanofibers. To investigate the irradiation effect on PAN fibers, PAN nanofibers were irradiated by electron beam at 1,000~5,000 kGy. Irradiated and non-irradiated PAN nanofibers were heated at 180 and $220^{\circ}C$ without applying pressure for 15 min. Then 1 metric ton has been applied for 5 min. SEM images have been found that the fiber kept its morphological behavior after the hot pressing up to electron beam irradiated 1,000 kGy. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses and temperature. FT-IR spectra have been found to decrease $C{\equiv}N$ stretch band with increasing the electron beam irradiation dose. These results indicate that the modification of PAN via reactions such as cyclization is significantly enhanced by electron beam irradiation and thermal compression technique.

줄 가열 변화에 따른 박막 트랜지스터 내 포논 열 흐름에 대한 수치적 연구 (Effect of Joule Heating Variation on Phonon Heat Flow in Thin Film Transistor)

  • 진재식;이준식
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.820-826
    • /
    • 2009
  • The anisotropic phonon conductions with varying Joule heating rate of the silicon film in Silicon-on-Insulator devices are examined using the electron-phonon interaction model. It is found that the phonon heat transfer rate at each boundary of Si-layer has a strong dependence on the heating power rate. And the phonon flow decreases when the temperature gradient has a sharp change within extremely short length scales such as phonon mean free path. Thus the heat generated in the hot spot region is removed primarily by heat conduction through Si-layer at the higher Joule heating level and the phonon nonlocality is mainly attributed to lower group velocity phonons as remarkably dissimilar to the case of electrons in laser heated plasmas. To validate these observations the modified phonon nonlocal model considering complete phonon dispersion relations is introduced as a correct form of the conventional theory. We also reveal that the relation between the phonon heat deposition time from the hot spot region and the relaxation time in Si-layer can be used to estimate the intrinsic thermal resistance in the parallel heat flow direction as Joule heating level varies.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

전처리 조건에 따른 탄소나노튜브의 성장 특성 (The growing characteristic carbon nanotubes depending on their pretreatment condition)

  • 정경호;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.779-782
    • /
    • 2003
  • Hot filament 플라즈마 화학기상 증착법 (HFPECVD)를 사용하여 전처리 조건에 따른 탄소나노튜브의 성장 특성을 관찰하였다. 암모니아 ($NH_3$)를 희석가스로 사용하였고, 아세틸렌 ($C_2H_2$)를 탄소 원료가스로 각각 사용하였다. 암모니아 가스 플라즈마를 사용하여 전처리 된 니켈 촉매 층의 SEM (Scanning Electron Microscopy) 이미지를 관찰하여 본 결과, 나노 사이즈의 촉매 그레인(grain)을 발견할 수 있었다. 그리고 탄소 나노튜브의 직경과 성장 밀도 또한 전처리 된 촉매 층에 따라 다른 양상을 보였다. TEM (Transmission Electron Microscopy)를 사용하여 탄소나노튜브를 관찰한 결과 공동구조(hollow)를 한 다중벽 탄소 나노튜브(MWCNT)를 관찰할 수 있었다. 성장된 나노튜브는 끝에 금속팁을 가지고 있으며, 나노튜브의 팁은 촉매로 사용한 것과 같은 물질로 구성되어 있었다. Raman spectroscopy를 사용하여 측정된 B-밴드와 G-밴드의 피크들은 각각 $1360cm^{-1}$$1598cm^{-1}$ 부근에서 나타났으며, 전처리 조건을 달리하여 성장시킨 탄소나노튜브 필름에서 이들 두 피크의 위치는 이동하지 않았고, 두 피크의 강도 비율 ($I_G/I_D$)은 전처리 조건에 따라 변하였다.

  • PDF

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • 최은창;박용섭;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

서로 다른 입자크기의 ZrC가 첨가된 W-ZrC 복합체의 미세구조 및 고온강도에 관한 연구 (Microstructure and Elevated Temperature Strength of W-ZrC Composites with Micrometric and Nanosized ZrC Particles)

  • 한윤수;류성수
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.415-421
    • /
    • 2014
  • W-10vol.%ZrC composites reinforced by micrometric and nanosized ZrC particles were prepared by hot-pressing of 25 MPa for 2 h at $1900^{\circ}C$. The effect of ZrC particle size on microstructure and mechanical properties at room temperature and elevated temperatures was investigated by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope observations and the flexural strength test of the W-ZrC composite. Microstructural analysis of the W-ZrC composite revealed that nanosized ZrC particles were homogeneously dispersed in the W matrix inhibiting W grain growth compared to W specimen with micrometric ZrC particle. As a result, its flexural strength was significantly improved. The flexural strength at room temperature for W-ZrC composite using nanosized ZrC particle being 740 MPa increased by around 2 times than that of specimen using micrometric ZrC particle which was 377 MPa. The maximum strength of 935 MPa was tested at $1200^{\circ}C$ on the W composite specimen containing nanosized ZrC particle.

다양한 젤화제와 감초추출액을 이용한 감초젤리의 특성 (Characteristics of Licorice Jellies using a Water Extract of Licorice Root and Various Gelling Agents)

  • 오혜숙;원향례
    • 한국지역사회생활과학회지
    • /
    • 제16권2호
    • /
    • pp.17-26
    • /
    • 2005
  • This study was conducted to investigate the usefulness of a hot water extract of licorice root as a source for production of healthy food. The electron donating capacity of the hot water extract of licorice root was very strong. This activity decreased by $6.9\%$ after keeping it in 5 days of cold storage, but it was not significantly different. Ten types of licorice jellies were prepared, using agar, agar-pectin, agar-cellulose, 2 different proportions of agar-pectin-cellulose as a gelling agent, and 2 levels of sugar. Among the 5 jellies containing $10\%$ sugar, the elasticity and overall acceptance of the agar jelly obtained the highest sensory score, but the color and flavor were not affected by the type of gelling agents. As the sugar concentration increased to $15\%$, the elasticity of the agar jelly was also evaluated as being the best one among the 5 jellies, but the overall acceptance was not significantly different from the others.

  • PDF

Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향 (Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel)

  • 정병훈;공종판;강정윤
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

SC PMOSFET의 수평 전개 모델과 노쇠화 메카니즘 (Lateral Electric Field Model and Degradation Mechanism of surface-Channel PMOSFET's)

  • 양광선;박종태;김봉렬
    • 전자공학회논문지A
    • /
    • 제31A권1호
    • /
    • pp.54-60
    • /
    • 1994
  • In this paper, we present the analytical models for the change of the lateral electric field distribution and the velocity saturation region length with the electron trapping of stressed SC-PMOSFET in the saturation region. To derive the hot-electron-induced lateral electric field of stressed SC-PMOSFET. Ko's pseudo two dimensional box model in the saturation region which illustrates the analysis of the velocity saturation region is modified under the condition of electron trapping in the oxide near the drain region. From the results, we have the following lateral electric field in the y-direction, that is, E(y) ES1satT.cosh(y/l) qNS1tT.sinh(y/l)/lCox. It is shown that the trapped electrons influence the field in the drain region. decreasing the lateral electric field. Calculated velocity saturaion length increases with the trapped electrons. increasing the drain current of stressed SCPMOSFET. This results well explain the HEIP phenomenon of PMOSFET's.

  • PDF

고온전자의 충돌 이온화 및 게이트 산화막 주입 모델링을 위한 Tail 전자 Hydrodynamic 모델 (Tail Electron Hydrodynamic Model for Consisten Modeling of Impact Ionization and Injection into Gate Oxide by Hot Electrons)

  • 안재경;박영준;민홍식
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.100-109
    • /
    • 1995
  • A new Hydrodynamic model for the high energy tail electrons(Tail Electron Hydrodynamic Model : TEHD) is developed using the moment method. The Monte Carlo method is applied to a $n^{+}-n^{-}-n^{+}$ device to calibrate the TEHD equations. the discretization method and numerical procedures are explained. New models for the impact ionization and injection into the gate oxide using the tail electron density are proposed. The simulated results of the impact ionization rate for a $n^{+}-n^{-}-n^{+}$ device and MOSFET devices, and the gate injection experiment are shown to give good agreement with the Monte Carlo simulation and the measurements.

  • PDF