DOI QR코드

DOI QR Code

Microstructure and Elevated Temperature Strength of W-ZrC Composites with Micrometric and Nanosized ZrC Particles

서로 다른 입자크기의 ZrC가 첨가된 W-ZrC 복합체의 미세구조 및 고온강도에 관한 연구

  • Han, Yoon Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 한윤수 (한국세라믹기술원 엔지니어링세라믹팀) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹팀)
  • Received : 2014.10.07
  • Accepted : 2014.10.21
  • Published : 2014.12.28

Abstract

W-10vol.%ZrC composites reinforced by micrometric and nanosized ZrC particles were prepared by hot-pressing of 25 MPa for 2 h at $1900^{\circ}C$. The effect of ZrC particle size on microstructure and mechanical properties at room temperature and elevated temperatures was investigated by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope observations and the flexural strength test of the W-ZrC composite. Microstructural analysis of the W-ZrC composite revealed that nanosized ZrC particles were homogeneously dispersed in the W matrix inhibiting W grain growth compared to W specimen with micrometric ZrC particle. As a result, its flexural strength was significantly improved. The flexural strength at room temperature for W-ZrC composite using nanosized ZrC particle being 740 MPa increased by around 2 times than that of specimen using micrometric ZrC particle which was 377 MPa. The maximum strength of 935 MPa was tested at $1200^{\circ}C$ on the W composite specimen containing nanosized ZrC particle.

Keywords

References

  1. S. W. Yih and C. T. Wang, Tungsten-Sources, Metallurgy, Properties and Application, Plenum Press, New York, 1979.
  2. P. Kumar and K. H. Sandhage: J. Mat. Sci., 34 (1999) 5757. https://doi.org/10.1023/A:1004754117195
  3. J. W. Song, S. H. Lee, H. S. Hong, H. Y. Kang and S. J. Hong: J. Korean Powder Metall. Inst., 19 (2012) 79 (Korean). https://doi.org/10.4150/KPMI.2012.19.1.079
  4. A. Luo and D. L. Jacobson: Int. J. Ref. Ref. Met. Hard Mater., 11 (1992) 97. https://doi.org/10.1016/0263-4368(92)90072-A
  5. W. D. Klopp and W. R. Witzke: J. Less-Common Met., 24 (1971) 424.
  6. H. M. Yun: Mater. Sci. Eng. A, 165 (1993) 65. https://doi.org/10.1016/0921-5093(93)90627-Q
  7. Y. Kitsunai, H. Kurishita, H. Kayano, Y. Hiraoka, T. Igarashi and T. Takida: J. Nucl. Mater., 271/272 (1999) 423. https://doi.org/10.1016/S0022-3115(98)00753-3
  8. M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina and T. Igarashi: Mater. Sci. Eng. A, 214 (1996) 174. https://doi.org/10.1016/0921-5093(96)10377-4
  9. G. M. Song, Y. J. Wang and Y. Zhou: J. Mat. Sci., 36 (2001) 4625. https://doi.org/10.1023/A:1017989913219
  10. J. H. Kim, M. Seo and S. Kang: Int. J. Refract. Met. Hard Mater., 35 (2012) 49. https://doi.org/10.1016/j.ijrmhm.2012.03.010
  11. T. Zhang, Y. Wang, Y. Zhou, T. Lei and G. Song: Mater. Sci. Eng. A, 474 (2008) 382. https://doi.org/10.1016/j.msea.2007.04.024
  12. T. Zhang, Y. Wang, Y. Zhou and G. M. Song: Mater. Sci. Eng. A, 527 (2010) 4021. https://doi.org/10.1016/j.msea.2010.03.008
  13. Y. Wang, H. X. Peng, Y. Zhou and G. M. Song: Mater. Sci. Eng. A, 528 (2011) 1805. https://doi.org/10.1016/j.msea.2010.11.029
  14. M. Seo, S. Kang, Y. Kim and S. S. Ryu: Int. J. Refract. Met. Hard Mater., 41 (2013) 345. https://doi.org/10.1016/j.ijrmhm.2013.05.007
  15. H. Okamoto: J. Phase Equilibria and Diffusion, 29 (2008) 543. https://doi.org/10.1007/s11669-008-9396-7