Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.6.415

Microstructure and Elevated Temperature Strength of W-ZrC Composites with Micrometric and Nanosized ZrC Particles  

Han, Yoon Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.21, no.6, 2014 , pp. 415-421 More about this Journal
Abstract
W-10vol.%ZrC composites reinforced by micrometric and nanosized ZrC particles were prepared by hot-pressing of 25 MPa for 2 h at $1900^{\circ}C$. The effect of ZrC particle size on microstructure and mechanical properties at room temperature and elevated temperatures was investigated by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope observations and the flexural strength test of the W-ZrC composite. Microstructural analysis of the W-ZrC composite revealed that nanosized ZrC particles were homogeneously dispersed in the W matrix inhibiting W grain growth compared to W specimen with micrometric ZrC particle. As a result, its flexural strength was significantly improved. The flexural strength at room temperature for W-ZrC composite using nanosized ZrC particle being 740 MPa increased by around 2 times than that of specimen using micrometric ZrC particle which was 377 MPa. The maximum strength of 935 MPa was tested at $1200^{\circ}C$ on the W composite specimen containing nanosized ZrC particle.
Keywords
W-ZrC composite; mechanical properties; nano ZrC; hot pressing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Mabuchi, K. Okamoto, N. Saito, M. Nakanishi, Y. Yamada, T. Asahina and T. Igarashi: Mater. Sci. Eng. A, 214 (1996) 174.   DOI   ScienceOn
2 G. M. Song, Y. J. Wang and Y. Zhou: J. Mat. Sci., 36 (2001) 4625.   DOI   ScienceOn
3 J. H. Kim, M. Seo and S. Kang: Int. J. Refract. Met. Hard Mater., 35 (2012) 49.   DOI
4 T. Zhang, Y. Wang, Y. Zhou, T. Lei and G. Song: Mater. Sci. Eng. A, 474 (2008) 382.   DOI   ScienceOn
5 Y. Wang, H. X. Peng, Y. Zhou and G. M. Song: Mater. Sci. Eng. A, 528 (2011) 1805.   DOI   ScienceOn
6 M. Seo, S. Kang, Y. Kim and S. S. Ryu: Int. J. Refract. Met. Hard Mater., 41 (2013) 345.   DOI   ScienceOn
7 H. Okamoto: J. Phase Equilibria and Diffusion, 29 (2008) 543.   DOI
8 S. W. Yih and C. T. Wang, Tungsten-Sources, Metallurgy, Properties and Application, Plenum Press, New York, 1979.
9 P. Kumar and K. H. Sandhage: J. Mat. Sci., 34 (1999) 5757.   DOI   ScienceOn
10 J. W. Song, S. H. Lee, H. S. Hong, H. Y. Kang and S. J. Hong: J. Korean Powder Metall. Inst., 19 (2012) 79 (Korean).   DOI   ScienceOn
11 A. Luo and D. L. Jacobson: Int. J. Ref. Ref. Met. Hard Mater., 11 (1992) 97.   DOI   ScienceOn
12 W. D. Klopp and W. R. Witzke: J. Less-Common Met., 24 (1971) 424.
13 H. M. Yun: Mater. Sci. Eng. A, 165 (1993) 65.   DOI   ScienceOn
14 Y. Kitsunai, H. Kurishita, H. Kayano, Y. Hiraoka, T. Igarashi and T. Takida: J. Nucl. Mater., 271/272 (1999) 423.   DOI   ScienceOn
15 T. Zhang, Y. Wang, Y. Zhou and G. M. Song: Mater. Sci. Eng. A, 527 (2010) 4021.   DOI   ScienceOn