• Title/Summary/Keyword: Host-pathogen

Search Result 420, Processing Time 0.022 seconds

First Report of Gymnosporangium globosum Causing American Hawthorn Rust in Korea

  • Yun, Hye-Young;Lee, Kyung-Joon;Kim, Young-Ho;Lee, Seung-Kyu
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.84-86
    • /
    • 2008
  • Field surveys and specimen collections of the rust fungal pathogen Gymnosporangium were carried out for 15 years from 1985 through 1999 in various locations of Korea. Macroscopic and microscopic examinations of morphological characteristics of aecia from the collected specimens revealed that Gymnosporangium globosum is the causal agent of American hawthorn rust disease on Crataegus pinnatifida and C. pinnatifida varmajor. The host plants are new for this rust fungus. G. globosum was found only in Gyeonggi and Chungbuk provinces, indicating that its distribution in Korea is limited. This is a first full description on morphological characters of aecia of G. globosum in Korea.

Autophagy as an Innate Immune Modulator

  • Oh, Ji Eun;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Autophagy is a fundamental cellular process in eukaryotic cells for maintaining homeostasis by degrading cellular proteins and organelles. Recently, the roles of autophagy have been expanded to immune systems, which in turn modulate innate immune responses. More specifically, autophagy acts as a direct effector for protection against pathogens, as well as a modulator of pathogen recognition and downstream signaling in innate immune responses. In addition, autophagy controls autoimmunity and inflammatory disorders by negative regulation of immune signaling. In this review, we focus on recent advances in the role of autophagy in innate immune systems.

What Can Proteomics Tell Us about Tuberculosis?

  • Susana Flores-Villalva;Elba Rogriguez-Hernandez;Yesenia Rubio-Venegas;Jorge Germinal Canto-Alarcon;Feliciano Milian-Suazo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1181-1194
    • /
    • 2015
  • Tuberculosis (TB) is an infectious disease transmitted by aerosol droplets and characterized by forming granulomatous lesions. Although the number of people infected in the population is high, the vast majority does not exhibit symptoms of active disease and only 5-10% develop the disease after a latent period that can vary from weeks to years. The bases of the immune response for this resistance are unknown, but it depends on a complex interaction between the environment, the agent, and the host. The analysis of cellular components of M. tuberculosis shows important host-pathogen interactions, metabolic pathways, virulence mechanisms, and mechanisms of adaptation to the environment. However, the M. tuberculosis proteome still remains largely uncharacterized in terms of virulence and pathogenesis. Here, we summarize some of the major proteomic studies performed to scrutinize all the mycobacterial components.

Conserved Virulence Factors of Pseudomonas aeruginosa are Required for Killing Bacillus subtilis

  • Park Shin-Young;Heo Yun-Jeong;Choi Young-Seok;Deziel Eric;Cho You-Hee
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2005
  • The multi-host pathogen, Pseudomonas aeruginosa, possesses an extraordinary versatility which makes it capable of surviving the adverse conditions provided by environmental, host, and, presumably, competing microbial factors in its natural habitats. Here, we investigated the P. aeruginosa-Bacillus subtilis interaction in laboratory conditions and found that some P. aeruginosa strains can outcompete B. subtilis in mixed planktonic cultures. This is accompanied by the loss of B. subtilis viability. The bactericidal activity of P. aeruginosa is measured on B. subtilis plate cultures. The bactericidal activity is attenuated in pqsA, mvfR, lasR, pilB, gacA, dsbA, rpoS, and phnAB mutants. These results suggest that P. aeruginosa utilizes a subset of conserved virulence pathways in order to survive the conditions provided by its bacterial neighbors.

RNA Modification and Its Implication in Plant Pathogenic Fungi

  • Jeon, Junhyun;Lee, Song Hee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.505-511
    • /
    • 2021
  • Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.

2-Undecanone derived from Pseudomonas aeruginosa modulates the neutrophil activity

  • Jeong, Yu Sun;Huh, Sunghyun;Kim, Ji Cheol;Park, Ji Ye;Lee, ChaeEun;Kim, Min-Sik;Koo, JaeHyung;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.395-400
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa) is a well-known Gramnegative opportunistic pathogen. Neutrophils play key roles in mediating host defense against P. aeruginosa infection. In this study, we identified a metabolite derived from P. aeruginosa that regulates neutrophil activities. Using gas chromatography-mass spectrometry, a markedly increased level of 2-undecanone was identified in the peritoneal fluid of P. aeruginosa-infected mice. 2-Undecanone elicited the activation of neutrophils in a Gαi-phospholipase C pathway. However, 2-undecanone strongly inhibited responses to lipopolysaccharide and bactericidal activity of neutrophils against P. aeruginosa by inducing apoptosis. Our results demonstrate that 2-undecanone from P. aeruginosa limits the innate defense activity of neutrophils, suggesting that the production of inhibitory metabolites is a strategy of P. aeruginosa for escaping the host immune system.

Innate immune recognition of respiratory syncytial virus infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.184-191
    • /
    • 2014
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection.

Emergence of a New Rust Disease of Virginia Creeper (Parthenocissus quinquefolia) through a Host Range Expansion of Neophysopella vitis

  • Na, Dong-Hwan;Lee, Jae Sung;Shin, Hyeon-Dong;Ono, Yoshitaka;Choi, Young-Joon
    • Mycobiology
    • /
    • v.50 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • Virginia creeper (or five-leaved ivy; Parthenocissus quinquefolia) is one of the most popular and widely grown climbers worldwide. In September 2021, Virginia creeper leaves with typical rust symptom were found in an arboretum in Korea, with severe damage. Globally, there is no record of a rust disease on Virginia creeper. Using morphological investigation and molecular phylogenetic inferences, the rust agent was identified as Neophysopella vitis, which is a rust pathogen of other Parthenocissus spp. including Boston ivy (P. tricuspidata). Given that the two ivy plants, Virginia creeper and Boston ivy, have common habitats, especially on buildings and walls, throughout Korea, and that N. vitis is a ubiquitous rust species affecting Boston ivy in Korea, it is speculated that the host range of N. vitis may recently have expanded from Boston ivy to Virginia creeper. The present study reports a globally new rust disease on Virginia creeper, which could be a major threat to the ornamental creeper.

Genetic Variation of Monilinia fructicola Population in Korea

  • Su In Lee;Hwa-Jung Lee;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • Brown rot disease, caused by Monilinia spp., poses a significant threat to pome and stone fruit crops globally, resulting in substantial economic losses during pre- and post-harvest stages. Monilinia fructigena, M. laxa, and M. fructicola are identified as the key agents responsible for brown rot disease. In this study, we employed the amplified fragment length polymorphism (AFLP) method to assess the genetic diversity of 86 strains of Monilinia spp. isolated from major stone fruit cultivation regions in South Korea. Specifically, strains were collected from Chungcheong, Gangwon, Gyeonggi, Gyeongsang, and Jeolla provinces (-do). A comparative analysis of strain characteristics, such as isolation locations, host plants, and responses to chemical fungicides, was conducted. AFLP phylogenetic classification using 20 primer pairs revealed the presence of three distinct groups, with strains from Jeolla province consistently forming a separate group at a high frequency. Furthermore, M. fructicola was divided into three groups by the AFLP pattern. Principal coordinate analysis and PERMANOVA were applied to compare strain information, such as origin, host, and fungicide sensitivity, revealing significant partition patterns for AFLP according to geographic origin and host plants. This study represents the utilization of AFLP methodology to investigate the genetic variability among M. fructicola isolates, highlighting the importance of continuous monitoring and management of variations in the brown rot pathogen.

The Role of Upper Airway Microbiome in the Development of Adult Asthma

  • Purevsuren Losol;Jun-Pyo Choi;Sae-Hoon Kim;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.19.1-19.18
    • /
    • 2021
  • Clinical and molecular phenotypes of asthma are complex. The main phenotypes of adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway inflammation that represent distinct clinical features. Upper and lower airways constitute a unique system and their interaction shows functional complementarity. Although human upper airway contains various indigenous commensals and opportunistic pathogenic microbiome, imbalance of this interactions lead to pathogen overgrowth and increased inflammation and airway remodeling. Competition for epithelial cell attachment, different susceptibilities to host defense molecules and antimicrobial peptides, and the production of proinflammatory cytokine and pattern recognition receptors possibly determine the pattern of this inflammation. Exposure to environmental factors, including infection, air pollution, smoking is commonly associated with asthma comorbidity, severity, exacerbation and resistance to anti-microbial and steroid treatment, and these effects may also be modulated by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid treatment for asthma may modify the composition of resident microbiota and clinical features. This review summarizes the effect of some environmental factors on the upper respiratory microbiome, the interaction between host-microbiome, and potential impact of asthma treatment on the composition of the upper airway microbiome.