Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.4.050

Innate immune recognition of respiratory syncytial virus infection  

Kim, Tae Hoon (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Lee, Heung Kyu (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
BMB Reports / v.47, no.4, 2014 , pp. 184-191 More about this Journal
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection.
Keywords
Interferon-beta promoter stimulator 1 (IPS-1); Pattern recognition receptor (PRR); Respiratory syncytial virus (RSV); Retinoic acid-inducible gene-I (RIG-I); Toll-like receptor (TLR);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chang, J. (2011) Current progress on development of respiratory syncytial virus vaccine. BMB Rep. 44, 232-237.   과학기술학회마을   DOI   ScienceOn
2 Ramaswamy, M., Shi, L., Monick, M. M., Hunninghake, G. W. and Look, D. C. (2004) Specific inhibition of type I interferon signal transduction by respiratory syncytial virus. Am. J. Respir. Cell. Mol. Biol. 30, 893-900.   DOI   ScienceOn
3 Fulginiti, V. A., Eller, J. J., Sieber, O. F., Joyner, J. W., Minamitani, M. and Meiklejohn, G. (1969) Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am. J. Epidemiol. 89, 435-448.
4 Crowe, J. E., Jr. (2001) Respiratory syncytial virus vaccine development. Vaccine 20(Suppl 1), S32-37.   DOI   ScienceOn
5 Haynes, L. M. (2013) Progress and challenges in RSV prophylaxis and vaccine development. J. Infect. Dis. 208 (Suppl 3), S177-183.   DOI   ScienceOn
6 Ventre, K. and Randolph, A. G. (2007) Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database Syst. Rev. Cd000181.
7 Kumar, H., Kawai, T. and Akira, S. (2011) Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16-34.   DOI   ScienceOn
8 Walsh, E. E., Hall, C. B., Briselli, M., Brandriss, M. W. and Schlesinger, J. J. (1987) Immunization with glycoprotein subunits of respiratory syncytial virus to protect cotton rats against viral infection. J. Infect. Dis. 155, 1198-1204.   DOI   ScienceOn
9 Chanock, R., Roizman, B. and Myers, R. (1957) Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, properties and characterization. Am. J. Hyg. 66, 281-290.
10 Chanock, R. and Finberg, L. (1957) Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic aspects of infection in infants and young children. Am. J. Hyg. 66, 291-300.
11 Connors, M., Collins, P. L., Firestone, C. Y. and Murphy, B. R. (1991) Respiratory syncytial virus (RSV) F, G, M2 (22K), and N proteins each induce resistance to RSV challenge, but resistance induced by M2 and N proteins is relatively short-lived. J. Virol. 65, 1634-1637.
12 Marr, N. and Turvey, S. E. (2012) Role of human TLR4 in respiratory syncytial virus-induced NF-$\kappa{B}$ activation, viral entry and replication. Innate. Immun. 18, 856-865.   DOI   ScienceOn
13 Lo, M. S., Brazas, R. M. and Holtzman, M. J. (2005) Respiratory syncytial virus nonstructural proteins NS1 and NS2 mediate inhibition of Stat2 expression and alpha/beta interferon responsiveness. J. Virol. 79, 9315-9319.   DOI   ScienceOn
14 Conzelmann, K. K. (2005) Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J. Virol. 79, 5241-5248.   DOI   ScienceOn
15 Blount, R. E., Jr., Morris, J. A. and Savage, R. E. (1956) Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med. 92, 544-549.   DOI
16 Haynes, L. M., Moore, D. D., Kurt-Jones, E. A., Finberg, R. W., Anderson, L. J. and Tripp, R. A. (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75, 10730-10737.   DOI   ScienceOn
17 Haeberle, H. A., Takizawa, R., Casola, A., Brasier, A. R., Dieterich, H., van Rooijen, N., Gatalica, Z. and Garofalo, R. P. (2002) Respiratory Syncytial Virus-Induced Activation of Nuclear Factor-$\kappa{B}$ in the Lung Involves Alveolar Macrophages and Toll-Like Receptor 4-Dependent Pathways. J. Infect. Dis. 186, 1199-1206.   DOI   ScienceOn
18 Ehl, S., Bischoff, R., Ostler, T., Vallbracht, S., Schulte-Monting, J., Poltorak, A. and Freudenberg, M. (2004) The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur. J. Immunol. 34, 1146-1153.   DOI   ScienceOn
19 Tal, G., Mandelberg, A., Dalal, I., Cesar, K., Somekh, E., Tal, A., Oron, A., Itskovich, S., Ballin, A., Houri, S., Beigelman, A., Lider, O., Rechavi, G. and Amariglio, N. (2004) Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis. 189, 2057-2063.   DOI   ScienceOn
20 Monick, M. M., Yarovinsky, T. O., Powers, L. S., Butler, N. S., Carter, A. B., Gudmundsson, G. and Hunninghake, G. W. (2003) Respiratory Syncytial Virus Up-regulates TLR4 and Sensitizes Airway Epithelial Cells to Endotoxin. J. Biol. Chem. 278, 53035-53044.   DOI   ScienceOn
21 Awomoyi, A. A., Rallabhandi, P., Pollin, T. I., Lorenz, E., Sztein, M. B., Boukhvalova, M. S., Hemming, V. G., Blanco, J. C. and Vogel, S. N. (2007) Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J. Immunol. 179, 3171-3177.   DOI
22 Puthothu, B., Forster, J., Heinzmann, A. and Krueger, M. (2006) TLR-4 and CD14 polymorphisms in respiratory syncytial virus associated disease. Dis. Markers 22, 303-308.   DOI
23 Murawski, M. R., Bowen, G. N., Cerny, A. M., Anderson, L. J., Haynes, L. M., Tripp, R. A., Kurt-Jones, E. A. and Finberg, R. W. (2009) Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J. Virol. 83, 1492-1500.   DOI   ScienceOn
24 Arnold, R. and Konig, W. (2006) Peroxisome proliferator-activated receptor-gamma agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells. Virology 350, 335-346.   DOI   ScienceOn
25 Dou, Y., Zhao, Y., Zhang, Z. Y., Mao, H. W., Tu, W. W. and Zhao, X. D. (2013) Respiratory syncytial virus infection induces higher Toll-like receptor-3 expression and TNF-alpha production than human metapneumovirus infection. PLoS One 8, e73488.   DOI
26 Liu, P., Jamaluddin, M., Li, K., Garofalo, R. P., Casola, A. and Brasier, A. R. (2007) Retinoic Acid-Inducible Gene I Mediates Early Antiviral Response and Toll-Like Receptor 3 Expression in Respiratory Syncytial Virus-Infected Airway Epithelial Cells. J. Virol. 81, 1401-1411.   DOI   ScienceOn
27 Inoue, Y., Shimojo, N., Arima, T. and Kohno, Y. (2006) Toll-Like Receptor 2 as a Functional Receptor to Respiratory Syncytial Virus. J. Allergy Clin. Immunol. 117, S210.
28 Paulus, S. C., Hirschfeld, A. F., Victor, R. E., Brunstein, J., Thomas, E. and Turvey, S. E. (2007) Common human Toll-like receptor 4 polymorphisms-Role in susceptibility to respiratory syncytial virus infection and functional immunological relevance. Clin. Immunol. 123, 252-257.   DOI   ScienceOn
29 Chen, L. F., Williams, S. A., Mu, Y., Nakano, H., Duerr, J. M., Buckbinder, L. and Greene, W. C. (2005) NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25, 7966-7975.   DOI   ScienceOn
30 Rudd, B. D., Burstein, E., Duckett, C. S., Li, X. and Lukacs, N. W. (2005) Differential Role for TLR3 in Respiratory Syncytial Virus-Induced Chemokine Expression. J. Virol. 79, 3350-3357.   DOI   ScienceOn
31 Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C. and Hunninghake, G. W. (2006) Respiratory Syncytial Virus Induces TLR3 Protein and Protein Kinase R, Leading to Increased Double- Stranded RNA Responsiveness in Airway Epithelial Cells. J. Immunol. 176, 1733-1740.   DOI
32 Shingai, M., Azuma, M., Ebihara, T., Sasai, M., Funami, K., Ayata, M., Ogura, H., Tsutsumi, H., Matsumoto, M. and Seya, T. (2008) Soluble G protein of respiratory syncytial virus inhibits Toll-like receptor 3/4-mediated IFN-beta induction. Int. Immunol. 20, 1169-1180.   DOI   ScienceOn
33 Huang, S., Wei, W. and Yun, Y. (2009) Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice. Wei Sheng Wu Xue Bao 49, 239-245.
34 Sasaki, C. Y., Barberi, T. J., Ghosh, P. and Longo, D. L. (2005) Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J. Biol. Chem. 280, 34538-34547.   DOI   ScienceOn
35 Zhong, H., Voll, R. E. and Ghosh, S. (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661-671.   DOI   ScienceOn
36 Phipps, S., Lam, C. E., Mahalingam, S., Newhouse, M., Ramirez, R., Rosenberg, H. F., Foster, P. S. and Matthaei, K. I. (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110, 1578-1586.   DOI   ScienceOn
37 Rudd, B. D., Smit, J. J., Flavell, R. A., Alexopoulou, L., Schaller, M. A., Gruber, A., Berlin, A. A. and Lukacs, N. W. (2006) Deletion of TLR3 Alters the Pulmonary Immune Environment and Mucus Production during Respiratory Syncytial Virus Infection. J. Immunol. 176, 1937-1942.   DOI
38 Schlender, J., Hornung, V., Finke, S., Gunthner-Biller, M., Marozin, S., Brzozka, K., Moghim, S., Endres, S., Hartmann, G. and Conzelmann, K. (2005) Inhibition of Toll-Like Receptor 7- and 9-Mediated Alpha/Beta Interferon Production in Human Plasmacytoid Dendritic Cells by Respiratory Syncytial Virus and Measles Virus. J. Virol. 79, 5507-5515.   DOI   ScienceOn
39 Lukacs, N. W., Smit, J. J., Mukherjee, S., Morris, S. B., Nunez, G. and Lindell, D. M. (2010) Respiratory Virus-Induced TLR7 Activation Controls IL-17-Associated Increased Mucus via IL-23 Regulation. J. Immunol. 185, 2231-2239.   DOI
40 Davidson, S., Kaiko, G., Loh, Z., Lalwani, A., Zhang, V., Spann, K., Foo, S. Y., Hansbro, N., Uematsu, S., Akira, S., Matthaei, K. I., Rosenberg, H. F., Foster, P. S. and Phipps, S. (2011) Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7-MyD88-dependent signaling pathway. J. Immunol. 186, 5938-5948.   DOI   ScienceOn
41 Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S. and Hartmann, G. (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997.   DOI   ScienceOn
42 Scagnolari, C., Midulla, F., Pierangeli, A., Moretti, C., Bonci, E., Berardi, R., De Angelis, D., Selvaggi, C., Di Marco, P., Girardi, E. and Antonelli, G. (2009) Gene expression of nucleic acid-sensing pattern recognition receptors in children hospitalized for respiratory syncytial virus-associated acute bronchiolitis. Clin. Vaccine Immunol. 16, 816-823.   DOI   ScienceOn
43 Wu, B., Peisley, A., Richards, C., Yao, H., Zeng, X., Lin, C., Chu, F., Walz, T. and Hur, S. (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152, 276-289.   DOI   ScienceOn
44 Rehwinkel, J., Tan, C. P., Goubau, D., Schulz, O., Pichlmair, A., Bier, K., Robb, N., Vreede, F., Barclay, W., Fodor, E. and Reis e Sousa, C. (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397-408.   DOI   ScienceOn
45 Demoor, T., Petersen, B. C., Morris, S., Mukherjee, S., Ptaschinski, C., De Almeida Nagata, D. E., Kawai, T., Ito, T., Akira, S., Kunkel, S. L., Schaller, M. A. and Lukacs, N. W. (2012) IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus. J. Immunol. 189, 5942-5953.   DOI   ScienceOn
46 Loo, Y. M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gill, M. A., Garcia-Sastre, A., Katze, M. G. and Gale, M., Jr. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335-345.   DOI   ScienceOn
47 Marr, N., Wang, T. I., Kam, S. H., Hu, Y. S., Sharma, A. A., Lam, A., Markowski, J., Solimano, A., Lavoie, P. M. and Turvey, S. E. (2014) Attenuation of Respiratory Syncytial Virus-Induced and RIG-I-Dependent Type I IFN Responses in Human Neonates and Very Young Children. J. Immunol. 192, 948-957.   DOI   ScienceOn
48 Xiao, G., Fong, A. and Sun, S. C. (2004) Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J. Biol. Chem. 279, 30099-30105.   DOI   ScienceOn
49 Zandi, E. and Karin, M. (1999) Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol. Cell Biol. 19, 4547-4551.   DOI
50 Dejardin, E., Droin, N. M., Delhase, M., Haas, E., Cao, Y., Makris, C., Li, Z. W., Karin, M., Ware, C. F. and Green, D. R. (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17, 525-535.   DOI   ScienceOn
51 Xiao, G., Harhaj, E. W. and Sun, S. C. (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol. Cell 7, 401-409.   DOI   ScienceOn
52 Sabbah, A., Chang, T. H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P. H., Xiang, Y. and Bose, S. (2009) Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 10, 1073-1080.   DOI   ScienceOn
53 Liu, P., Li, K., Garofalo, R. P. and Brasier, A. R. (2008) Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. J. Biol. Chem. 283, 23169-23178.   DOI   ScienceOn
54 Jamaluddin, M., Tian, B., Boldogh, I., Garofalo, R. P. and Brasier, A. R. (2009) Respiratory syncytial virus infection induces a reactive oxygen species-MSK1-phospho-Ser-276 RelA pathway required for cytokine expression. J. Virol. 83, 10605-10615.   DOI   ScienceOn
55 Yoboua, F., Martel, A., Duval, A., Mukawera, E. and Grandvaux, N. (2010) Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J. Virol. 84, 7267-7277.   DOI   ScienceOn
56 Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., Fukase, K., Inamura, S., Kusumoto, S., Hashimoto, M., Foster, S. J., Moran, A. P., Fernandez-Luna, J. L. and Nunez, G. (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509-5512.   DOI   ScienceOn
57 Vissers, M., Remijn, T., Oosting, M., de Jong, D. J., Diavatopoulos, D. A., Hermans, P. W. and Ferwerda, G. (2012) Respiratory syncytial virus infection augments NOD2 signaling in an IFN-beta-dependent manner in human primary cells. Eur. J. Immunol. 42, 2727-2735.   DOI   ScienceOn
58 Segovia, J., Sabbah, A., Mgbemena, V., Tsai, S. Y., Chang, T. H., Berton, M. T., Morris, I. R., Allen, I. C., Ting, J. P. and Bose, S. (2012) TLR2/MyD88/NF-kappaB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 7, e29695.   DOI
59 Takeuchi, R., Tsutsumi, H., Osaki, M., Haseyama, K., Mizue, N. and Chiba, S. (1998) Respiratory syncytial virus infection of human alveolar epithelial cells enhances interferon regulatory factor 1 and interleukin-1beta-convert ing enzyme gene expression but does not cause apoptosis. J. Virol. 72, 4498-4502.
60 Triantafilou, K., Kar, S., Vakakis, E., Kotecha, S. and Triantafilou, M. (2013) Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax 68, 66-75.   DOI   ScienceOn
61 Pang, I. K. and Iwasaki, A. (2011) Inflammasomes as mediators of immunity against influenza virus. Trends Immunol. 32, 34-41.   DOI   ScienceOn
62 Collins, P. L. and Graham, B. S. (2008) Viral and host factors in human respiratory syncytial virus pathogenesis. J. Virol. 82, 2040-2055.   DOI   ScienceOn
63 Gagro, A., Tominac, M., KrSUloviC-HreSIC, V., BaCE, A., MatiC, M., DraZEnoviC, V., MlinariC-GalinoviC, G., Kosor, E., Gotovac, K., BolanCA, I., Batinica, S. and RabatiC, S. (2004) Increased Toll-like receptor 4 expression in infants with respiratory syncytial virus bronchiolitis. Clin. Exp. Immunol. 135, 267-272.   DOI   ScienceOn
64 Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J. and Finberg, R. W. (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398-401.   DOI   ScienceOn
65 Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. and Haegeman, G. (2003) Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313-1324.   DOI   ScienceOn
66 Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F. and Reis e Sousa, C. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001.   DOI   ScienceOn
67 Bhoj, V. G., Sun, Q., Bhoj, E. J., Somers, C., Chen, X., Torres, J. P., Mejias, A., Gomez, A. M., Jafri, H., Ramilo, O. and Chen, Z. J. (2008) MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proc. Natl. Acad. Sci. U. S. A. 105, 14046-14051.   DOI   ScienceOn