Browse > Article
http://dx.doi.org/10.4014/jmb.1502.02008

What Can Proteomics Tell Us about Tuberculosis?  

Susana Flores-Villalva (INIFAP, Centro Nacional de Investigacion Disciplinaria en Fisiologia y Mejoramiento Animal)
Elba Rogriguez-Hernandez (INIFAP, Centro Nacional de Investigacion Disciplinaria en Fisiologia y Mejoramiento Animal)
Yesenia Rubio-Venegas (Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro)
Jorge Germinal Canto-Alarcon (Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro)
Feliciano Milian-Suazo (Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.8, 2015 , pp. 1181-1194 More about this Journal
Abstract
Tuberculosis (TB) is an infectious disease transmitted by aerosol droplets and characterized by forming granulomatous lesions. Although the number of people infected in the population is high, the vast majority does not exhibit symptoms of active disease and only 5-10% develop the disease after a latent period that can vary from weeks to years. The bases of the immune response for this resistance are unknown, but it depends on a complex interaction between the environment, the agent, and the host. The analysis of cellular components of M. tuberculosis shows important host-pathogen interactions, metabolic pathways, virulence mechanisms, and mechanisms of adaptation to the environment. However, the M. tuberculosis proteome still remains largely uncharacterized in terms of virulence and pathogenesis. Here, we summarize some of the major proteomic studies performed to scrutinize all the mycobacterial components.
Keywords
M. tuberculosis; M. bovis; cellular components; culture filtrate; proteome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xiong Y, Chalmers MJ, Gao FP, Cross TA, Marshall AG. 2005. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. J. Proteome Res. 4: 855-861.   DOI
2 Yang H, Troudt J, Grover A, Arnett K, Lucas M, Cho YS, et al. 2011. Three protein cocktails mediate delayed-type hypersensitivity responses indistinguishable from that elicited by purified protein derivative in the guinea pig model of Mycobacterium tuberculosis infection. Infect. Immun. 79: 716-723.   DOI
3 Xolalpa W, Vallecillo AJ, Lara M, Mendoza-Hernandez G, Comini M, Spallek R, Singh M, Espitia C. 2007. Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7: 3332-3341.   DOI
4 Yang H, Kruh-Garcia NA, Dobos KM. 2012. Purified protein derivatives of tuberculin - past, present, and future. FEMS Immunol. Med Microbiol. 66: 273-280.   DOI
5 Young DB, Kaufmann SHE, Hermans PWM. 1992. Mycobacterial protein antigens: a compilation. Mol. Microbiol. 6: 133-145.   DOI
6 Zheng J, Liu L, Wei C, Leng W, Yang J, Li W, et al. 2012. A comprehensive proteomic analysis of Mycobacterium bovis bacillus Calmette-Guérin using high resolution Fourier transform mass spectrometry. J. Proteomics 77: 357-371.   DOI
7 Zheng J, Ren X, Wei C, Yang J, Hu Y, Liu L, Xu X, Wang J, Jin Q. 2013. Analysis of the secretome and identification of novel constituents from culture filtrate of bacillus Calmette-Guerin using high-resolution mass spectrometry. Mol. Cell. Proteomics 12: 2081-2095.   DOI
8 Starck J, Källenius G, Marklund B-I, Andersson DI, Akerlund T. 2004a. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150: 3821-3829.   DOI
9 Weldingh K, Rosenkrands I, Jacobsen S, Birk P, Elhay MJ, Andersen P, et al. 1998. Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect. Immun. 66: 3492-3500.
10 Vilchèze C, Molle V, Carrère-Kremer S, Leiba J, Mourey L, Shenai S, et al. 2014. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog. 10: e1004115.   DOI
11 Vordermeier M, Jones GJ, Whelan AO. 2011. DIVA reagents for bovine tuberculosis vaccines in cattle. Expert Rev. Vaccines 10: 1083-1091.   DOI
12 Wang Z, Potter BM, Gray AM, Sacksteder KA, Geisbrecht BV, Laity JH. 2007. The solution structure of antigen MPT64 from Mycobacterium tuberculosis defines a new family of beta-grasp proteins. J. Mol. Biol. 366: 375-381.   DOI
13 Wiker HG. 2009. MPB70 and MPB83--major antigens of Mycobacterium bovis. Scand. J. Immunol. 69: 492-499.   DOI
14 Sidders B, Pirson C, Hogarth PJ, Hewinson RG, Stoker NG, Vordermeier HM, Ewer K. 2008. Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect. Immun. 76: 3932-3939.   DOI
15 Wilson RA, Maughan WN, Kremer L, Besra GS, Fütterer K. 2004. The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases. J. Mol. Biol. 335: 519-530.   DOI
16 World Health Organization. 2013. Global Tuberculosis Report. France, WHO.
17 Wu L, Zhang M, Sun M, Jia B, Wang X. 2011. Humoural immune responses to a recombinant 16-kDa-38-kDa--ESAT-6 Mycobacterial Antigen in tuberculosis. J. Int. Med. Res. 39: 514-521.   DOI
18 Smith CV, Huang C, Miczak A, Russell DG, Sacchettini JC, Höner zu Bentrup K. 2003. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 1735-1743.   DOI
19 Siddiqui KF, Amir M, Agrewala JN. 2011. Understanding the biology of 16 kDa antigen of Mycobacterium tuberculosis: scope in diagnosis, vaccine design and therapy. Crit. Rev. Microbiol. 37: 349-357.   DOI
20 Singhal N, Sharma P, Kumar M, Joshi B, Bisht D. 2012. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci. 10: 14.   DOI
21 Sinha S, Kosalai K, Arora S, Namane A, Sharma P, Gaikwad AN, et al. 2005. Immunogenic membraneassociated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology 151: 2411-2419.   DOI
22 Rosenkrands I, King A, Weldingh K, Moniatte M, Moertz E, Andersen P. 2000. Towards the proteome of Mycobacterium tuberculosis. Electrophoresis 21: 3740-3756.   DOI
23 Sonnenberg MG, Belisle JT. 1997. Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect. Immun. 65: 4515-4524.
24 Sørensen AL, Nagai S, Houen G, Andersen P, Andersen AB. 1995. Purification and characterization of a low-molecularmass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63: 1710-1717.
25 Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S, Mukhopadhyay S. 2014. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog. 10: e1004446.   DOI
26 Russell RB, Eggleston DS. 2000. New roles for structure in biology and drug discovery. Nat. Struct. Biol. 7: 928-930.   DOI
27 Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CE III, Andersen P. 2002. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J. Bacteriol. 184: 3485-3491.   DOI
28 Rosenkrands I, Weildingh K, Jacobsen S, Hansen VC, Florio W, Gianetri I, Andersen P. 2000. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21: 935-948.   DOI
29 Russell DG. 2007. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5: 39-47.   DOI
30 Ryndak M, Wang S, Smith I. 2008. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 16: 528-534.   DOI
31 Sachdeva P, Misra R, Tyagi AK, Singh Y. 2010. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J. 277: 605-626.   DOI
32 Sajid A, Arora G, Gupta M, Singhal A, Chakraborty K, Nandicoori VK, Singh Y. 2011. Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J. Bacteriol. 193: 5347-5358.   DOI
33 Shukla S, Richardson ET, Athman JJ, Shi L, Wearsch PA, McDonald D, et al. 2014. Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog. 10: e1004471.   DOI
34 Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, Menozzi FD. 2001. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412: 190-194.   DOI
35 Raynaud, Papavinasasundaram KG, Speight RA, Springer B, Sander P, Böttger EC, et al. 2002. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol. Microbiol. 46: 191-201.   DOI
36 Pieters J. 2008. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe. 3: 399-407.   DOI
37 Prasad TSK, Verma R, Kumar S, Nirujogi RS, Sathe GJ, Madugundu AK, et al. 2013. Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis. Clin. Proteomics 10: 8.   DOI
38 Puffer RR, Steward HC, Gass. RS. 1945. Tuberculosis in house- hold contacts associates: the inuence of age and relationship. Am. Rev. Tuberc 52: 89-103.
39 Rifat D, Belchis DA, Karakousis PC. 2014. senX3- independent contribution of regX3 to Mycobacterium tuberculosis virulence. BMC Microbiol. 14: 265.   DOI
40 Reddy MCM, Kuppan G, Shetty ND, Owen JL, Ioerger TR, Sacchettini JC. 2008. Crystal structures of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with substrate and inhibitors. Protein Sci. 17: 2134-2144.   DOI
41 Roberts MM, Coker AR, Fossati G, Coates ARM, Wood SP, Mascagni P. 2003. Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J. Bacteriol. 185: 4172-4185.   DOI
42 Rohde K, Yates RM, Purdy GE, Russell DG. 2007. Mycobacterium tuberculosis and the environment within the phagosome. 219: 37-54.   DOI
43 Nagai S, Wiker HG, Harboe M, Kinomoto M. 1991. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect. Immun. 59: 372-382.
44 Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, Scrivens JH. 2009. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteome Res. 8: 3752-3759.   DOI
45 O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. 2013. The immune response in tuberculosis. Annu. Rev. Immunol. 31: 475-527.   DOI
46 Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV. 2003. Inhibition of IFN- -induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171: 175-184.   DOI
47 Parish T. 2003. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149: 1423-1435.   DOI
48 Monahan IM, Betts J, Banerjee DK, Butcher PD. 2001. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147: 459-471.   DOI
49 Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. 2006. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol. 177: 422-429.   DOI
50 Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, et al. 2005. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol. Biol. Cell 16: 396-404.   DOI
51 Målen H, Berven FS, Søfteland T, Arntzen MØ, D’Santos CS, De Souza GA, Wiker HG. 2008. Membrane and membrane-associated proteins in Triton X-114 extracts of Mycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies. Proteomics 8: 1859-1870.   DOI
52 Mattow J, Jungblut PR, Schaible UE, Mollenkopf H, Lamer S, Zimny-arndt U, et al. 2001. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 22: 2936-2946.   DOI
53 Målen H, Pathak S, Søfteland T, de Souza GA, Wiker HG. 2010. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol. 10: 132.   DOI
54 Målen H, De Souza G a, Pathak S, Søfteland T, Wiker HG. 2011. Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiol. 11: 18.   DOI
55 Manca C, Lyashchenko K, Colangeli R, Gennaro ML, Manca C, Lyashchenko K, et al. 1997. MTC28, a novel 28-kilodalton proline-rich secreted antigen specific for the Mycobacterium tuberculosis complex. Infect. Immun. 65: 4951-4957.
56 Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, et al. 1999. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33: 1103-1117.   DOI
57 Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, et al. 2003. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24: 3405-3420.   DOI
58 Mattow J, Siejak F, Hagens K, Becher D, Albrecht D, Krah A, et al. 2006. Proteins unique to intraphagosomally grown Mycobacterium tuberculosis. Proteomics 6: 2485-2494.   DOI
59 Jungblut PR, Müller E, Mattow J, Kaufmann SHE. 2001. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun. 69: 5905-5907.   DOI
60 Kurtz S, McKinnon KP, Runge MS, Ting JP-Y, Braunstein M. 2006. The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect. Immun. 74: 6855-6864.   DOI
61 Kremer L, Maughan WN, Wilson RA, Dover LG, Besra GS. 2002. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Lett. Appl. Microbiol. 34: 233-237.   DOI
62 Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM. 2010. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5: e13938.   DOI
63 Kulchavenya E. 2014. Extrapulmonary tuberculosis: are statistical reports accurate? Ther. Adv. Infect. Dis. 2: 61-70.   DOI
64 Lee B, Horwitz MA. 1995. Identification of Macrophage and Stress-induced Proteins of Mycobacterium tuberculosis. J. Clin. Invest. 96: 245-249.   DOI
65 Goulding CW, Parseghian A, Sawaya MR, Cascio D, Apostol MI, Gennaro ML, Eisenberg D. 2002. Crystal structure of a major secreted protein of Mycobacterium tuberculosis-MPT63 at 1.5-A resolution. Protein Sci. 11: 2887-2893.   DOI
66 Lew JM, Kapopoulou A, Jones LM, Cole ST. 2011. TubercuList--10 years after. Tuberculosis 91: 1-7.   DOI
67 Målen H, Berven FS, Fladmark KE, Wiker HG. 2007. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7: 1702-1718.   DOI
68 González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C. 2009. Mycobacterium tuberculosis glycoproteomics based on ConAlectin affinity capture of mannosylated proteins. J. Proteome Res. 8: 721-733.   DOI
69 Jagusztyn-krynicka ELBK, Roszczenko P, Grabowska A. 2009. Impact of proteomics on anti-Mycobacterium tuberculosis (MTB) vaccine development. Polish J. Microbiol. 58: 281-287.
70 Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X. 2003. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol. Cell. Proteomics 2: 1284-1296.   DOI
71 Gunawardena HP, Feltcher ME, Wrobel JA, Gu S, Miriam B, Chen X. 2013. Comparison of the membrane proteome of virulent Mycobacterium tuberculosis and the attenuated Mycobacterium bovis BCG vaccine strain by label-free quantitative proteomics. J. Proteome Res. 12: 5463-5474.   DOI
72 Jagirdar J, Zagzag D. 1996. Pathology and insights into pathogenesis of tuberculosis, pp. 467-482. In Rom WN, Garay SM (eds.). Tuberculosis. 1st Ed. Little, Brown and Company, New York, N.Y.
73 Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, et al. 2013. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4: 3-66.   DOI
74 Jiang XIN, Zhang W, Gao F, Huang Y, Lv C, Wang H. 2006. Comparison of the proteome of isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis. Microb. Drug Resist. 12: 231-238.   DOI
75 Johnson S, Brusasca P, Spencer JS, Wiker HG, Shashkina E, Kreiswirth B, et al. 2001. Characterization of the secreted MPT53 antigen of Mycobacterium tuberculosis. Infect. Immun. 69: 5936-5939.   DOI
76 Flynn JL, Chan J. 2003. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr. Opin. Immunol. 15: 450-455.   DOI
77 Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH. 2004. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol. 173: 2660-2668.   DOI
78 Forrellad MA, Bianco MV, Blanco FC, Nuñez J, Klepp LI, Vazquez CL, et al. 2013. Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis. BMC Microbiol. 13: 200.   DOI
79 Fukui Y, Hirai T, Uchida T, Yoneda M. 1965. Extracellular proteins of tubercle bacilli. IV. Alpha and beta antigens as major extracellular protein products and as cellular components of a strain (H37Rv) of Mycobacterium tuberculosis. Biken J. 8: 189-199.
80 Ganguly N, Siddiqui I, Sharma P. 2008. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis 88: 510-517.   DOI
81 Esparza M, Palomares B, García T, Espinosa P, Zenteno E, Mancilla R. 2014. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis. Scand. J. Immunol. Epub ahead.
82 Gehring AJ, Rojas RE, Canaday DH, David L, Harding CV, Boom WH, Lakey DL. 2003. The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and Fc γ R1 on human macrophages through Toll-like receptor 2. Infect Immun. 71: 4487-4497.   DOI
83 Gevaert K, Vandekerckhove J. 2000. Protein identification methods in proteomics proteomics. Electrophoresis 21: 1145-1154.   DOI
84 Ernst JD, Trevejo-Nuñez G, Banaiee N. 2007. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J. Clin. Invest. 117: 1738-1745.   DOI
85 Florczyk MA, Mccue LA, Stack RF, Hauer CR, Mcdonough KA. 2001. Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins. Infect. Immun. 69: 5777-5785.   DOI
86 Espitia C, Laclette JP, Mondrago M, Amador A, Campuzano J, Martens A, et al. 1999. The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology 145: 3487-3495.   DOI
87 Espitia C, Rodríguez E, Ramón-Luing L, Echeverría-Valencia G, Vallecillo AJ. 2012. Host – pathogen interactions in tuberculosis, pp. 43-76. In Cardona PJ (ed.). Understanding Tuberculosis. Analyzing the Origen of Mycobacterium Tuberculosis Pathogenicity. 1st Ed. InTech, Rijeka, Croatia.
88 Fay A, Glickman MS. 2014. An essential nonredundant role for mycobacterial DnaK in native protein folding. PLoS Genet. 10: e1004516.   DOI
89 Daniel TM, Janicki BW. 1978. Mycobacterial antigens: a review of their isolation, chemistry, and immunological properties. Microbiol. Rev. 42: 84-113.
90 Flores-Villalva S, Suárez-Güemes F, Espitia C, Whelan AO, Vordermeier M, Gutiérrez-Pabello JA. 2012. Specificity of the tuberculin skin test is modified by use of a protein cocktail containing ESAT-6 and CFP-10 in cattle naturally infected with Mycobacterium bovis. Clin. Vaccine Immunol. 19: 797-803.   DOI
91 Darwin KH, Lin G, Chen Z, Li H, Nathan CF. 2005. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 55: 561-571.   DOI
92 Drumm JE, Mi K, Bilder P, Sun M, Lim J, Bielefeldt-Ohmann H, et al. 2009. Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection. PLoS Pathog. 5: e1000460.   DOI
93 De Souza GA, Fortuin S, Aguilar D, Pando RH, McEvoy CRE, van Helden PD, et al. 2010. Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hypervirulent clinical Mycobacterium tuberculosis Beijing isolates. Mol. Cell. Proteomics 9: 2414-2423.   DOI
94 De Souza GA, Leversen NA, Målen H, Wiker HG. 2011. Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J. Proteomics 75: 502-510.   DOI
95 Deenadayalan A, Sundaramurthi JC, Raja A. 2010. Immunological and proteomic analysis of preparative isoelectric focusing separated culture filtrate antigens of Mycobacterium tuberculosis. Exp. Mol. Pathol. 88: 156-162.   DOI
96 Muñoz-Elías EJ, McKinney JD. 2006. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11: 638-644.   DOI
97 Cho YS, Dobos KM, Prenni J, Yang H, Hess A, Andersen P, et al. 2013. Deciphering the proteome of the in vivo diagnostic reagent "purified protein derivative" from Mycobacterium tuberculosis. Proteomics 12: 979-991.   DOI
98 Ernst JD. 2012. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12: 581-591.   DOI
99 Borsuk S, Newcombe J, Mendum TA, Dellagostin OA, McFadden J. 2009. Identification of proteins from tuberculin purified protein derivative (PPD) by LC-MS/MS. Tuberculosis (Edinb.) 89: 423-430.   DOI
100 Brewis IA, Brennan P. 2010. Proteomics technologies for the global identification and quantification of proteins. Adv. Protein Chem. Struct. Biol. 80: 1-44.   DOI
101 Chao MC, Rubin EJ. 2010. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol. 64: 293-311.   DOI
102 Chen JM, Boy-Röttger S, Dhar N, Sweeney N, Buxton RS, Pojer F, et al. 2012. EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J. Bacteriol. 194: 884-893.   DOI
103 Cho SH, Goodlett D, Franzblau S. 2006. ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis (Edinb.) 86: 445-460.   DOI
104 Chopra P, Singh A, Koul A, Ramachandran S, Drlica K, Tyagi AK, Singh Y. 2003. Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. Eur. J. Biochem. 270: 625-634.   DOI
105 Comstock GW. 1975. Frost revisited: the modern epidemiology of tuberculosis. Am. J. Epidemiol. 101: 363-382.   DOI
106 Daffé M, Etienne G. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. 79: 153-169.   DOI
107 Ang K, Ibrahim P, Gam L. 2014. Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv. Biotechnol. Appl. Biochem. 61: 153-164.   DOI
108 Abdallah AM, Gey van Pittius NC, Champion P a D, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, et al. 2007. Type VII secretion--mycobacteria show the way. Nat. Rev. Microbiol. 5: 883-891.   DOI
109 Albrethsen J, Agner J, Piersma SR, Højrup P, Pham T V, Weldingh K, et al. 2013. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxinantitoxin systems. Mol. Cell. Proteomics 12: 1180-1191.   DOI
110 Bergstedt W, Tingskov PN, Thierry-Carstensen B, Hoff ST, Aggerbeck H, Thomsen VO, et al. 2010. First-in-man open clinical trial of a combined rdESAT-6 and rCFP-10 tuberculosis specific skin test reagent. PLoS One 5: e11277.   DOI
111 Bell C, Smith T, Sweredoski MJ, Hess S. 2012. Characterization of the Mycobacterium tuberculosis proteome by liquid chromatography mass spectrometry-based proteomics techniques: a comprehensive resource for tuberculosis research. J. Proteome Res. 11: 119-130.   DOI
112 Berger BJ, Knodel MH. 2003. Characterisation of methionine adenosyltransferase from Mycobacterium smegmatis and M. tuberculosis. BMC Microbiol. 3: 1-13.   DOI
113 Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, et al. 2007. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl. Acad. Sci. USA 104: 5157-5162.   DOI
114 Boon C, Li R, Qi R, Dick T. 2001. Proteins of Mycobacterium bovis BCG induced in the wayne dormancy model.J. Bacteriol. 183: 2672-2676.   DOI