Browse > Article

Conserved Virulence Factors of Pseudomonas aeruginosa are Required for Killing Bacillus subtilis  

Park Shin-Young (Department of Life Science, Sogang University)
Heo Yun-Jeong (Department of Life Science, Sogang University)
Choi Young-Seok (Department of Life Science, Sogang University)
Deziel Eric (INRS-Institut Armand-Frappier)
Cho You-Hee (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology / v.43, no.5, 2005 , pp. 443-450 More about this Journal
Abstract
The multi-host pathogen, Pseudomonas aeruginosa, possesses an extraordinary versatility which makes it capable of surviving the adverse conditions provided by environmental, host, and, presumably, competing microbial factors in its natural habitats. Here, we investigated the P. aeruginosa-Bacillus subtilis interaction in laboratory conditions and found that some P. aeruginosa strains can outcompete B. subtilis in mixed planktonic cultures. This is accompanied by the loss of B. subtilis viability. The bactericidal activity of P. aeruginosa is measured on B. subtilis plate cultures. The bactericidal activity is attenuated in pqsA, mvfR, lasR, pilB, gacA, dsbA, rpoS, and phnAB mutants. These results suggest that P. aeruginosa utilizes a subset of conserved virulence pathways in order to survive the conditions provided by its bacterial neighbors.
Keywords
Bacillus; Pseudomonas aeruginosa; survival; virulence;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Boles, B.R., M. Thoendel, and P.K. Singh. 2004. Self-generated diversity produces 'insurance effects' in biofilm communities. Proc. Natl. Acad. Sci. USA. 101, 16630-16635
2 Cao, H., G. Krishnan, B. Goumnerov, J. Tsongalis, R. Tompkins, and L.G. Rahme. 2001. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl. Acad. Sci. USA. 98, 14613-14618
3 D'Argenio, D.A., M.W. Calfee, P.B. Rainey, and E.C. Pesci. 2002. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. 184, 6481-6489   DOI   ScienceOn
4 Deziel, E., Y. Comeau, and R. Villemur. 2001. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol. 183, 1195-1204   DOI   ScienceOn
5 Hacker, J. and J.B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Ann. Rev. Microbiol. 54, 641-679   DOI   ScienceOn
6 HauBler, S. 2004. Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ. Microbiol. 6, 546-551.   DOI   ScienceOn
7 Jin, U.-H., S.-H. Cho, M.-G. Kim, S.-D. Ha, K.-S. Kim, K-H. Lee, K.-Y. Kim, D.H. Chung, Y.-C. Lee, and C.-H. Kim. 2004. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples. J. Microbiol. 42, 216-222
8 Kim, S.-H. 2004. Roles of virulence factors in the interaction between Pseudomonas aeruginosa and Bacillus subtilis. M.S. thesis. Sogang University, Seoul, Korea
9 Lau, G.W., D.J. Hassett, H. Ran, and F. Kong. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10, 599-606   DOI   ScienceOn
10 Lee, J.-S., S.-H. Kim, and Y.-H. Cho. 2004. Dithiothreitol attenuates the pathogenic interaction between Pseudomonas aeruginosa and Drosophila melanogaster. J. Microbiol. Biotech. 14, 367-372
11 Lee, J.-S., Y.-J. Heo, J.K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73, 4399-4403   DOI   ScienceOn
12 Rahme, L.G., F.M. Ausubel, H. Cao, E. Drenkard, B.C. Goumnerov, G.W. Lau, S. Mahajan-Miklos, J. Plotnikova, M.W. Tan, J. Tsongalis, C.L. Walendziewicz, and Tompkins, R.G. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA. 97, 8815-8821
13 Ramos, J.L., E. Duque, P. Godoy, and A. Segura. 1998. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180, 3323-3329   PUBMED
14 Schuster, M., C.P. Lostroh, T. Ogi, and E.P. Greenberg. 2003. Idetification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066-2079   DOI   ScienceOn
15 Simon, R., U. Priefer, and A. Puhler. 1983. A broad-host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1, 784-791   DOI
16 Van Delden, C. and B.H. Iglewski. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551-560   DOI   ScienceOn
17 Sambrook, J. and D.W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, New York
18 Wade, D.S., M.W. Calfee, E.R. Rocha, E.A. Ling, E. Engstrom, J.P. Coleman, and E.C. Pesci. 2005. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187, 4372-4380   DOI   ScienceOn
19 Hentzer, M., H. Wu, J.B. Andersen, K. Riedel, T.B. Rasmussen, N. Bagge, N. Kumar, M.A. Schembri, Z. Song, P. Kristoffersen, M. Manefield, J.W. Costerton, S. Molin, L. Eberl, P. Steinberg, S. Kjelleberg, N. Hoiby, and M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803-3815   DOI   PUBMED   ScienceOn
20 Holloway, B.W. 1969. Genetics of Pseudomonas. Bacteriol. Rev. 33, 419-443
21 Cosson, P., L. Zulianello, O. Join-Lambert, F. Faurisson, L. Gebbie, M. Benghezal, C. van Delden, L.K. Curty, and T. Kohler. 2002. Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. Bacteriol. 184, 3027-3033   DOI   ScienceOn
22 Lee, Y.K., K.-K. Kwon, K.H. Cho, H.W. Kim, J.H. Park, and H.K. Lee. 2003. Culture and identification of bacteria from marine biofilms. J. Microbiol. 41, 183-188
23 Shin, I., H.-B. Ryu, H.-S. Yim, and S.-O. Kang. 2005. Cytochrome $c_{550}$ is related to inhibition of sporulation in Bacillus subtilis. J. Microbiol. 43, 244-250
24 Pukatzki, S., R.H. Kessin, and J.J. Mekalanos. 2002. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA. 99, 3159-3164
25 Deziel, E., F. Lepine, S. Milot, J. He, M.N. Mindrinos, R.G. Tompkins, and L.G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4- hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA. 101, 1339-1344
26 Essar, D.W., L. Eberly, A. Hadero, and I.P. Crawford. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172, 884-900   PUBMED
27 Gang, R.K., R.L. Bang, S.C. Sanyal, E. Mokaddas, and A.R. Lari. 1999. Pseudomonas aeruginosa septicaemia in burns. Burns 25, 611-616   DOI   ScienceOn
28 Ornston, L.N. and D. Parke. 1977. The evolution of induction mechanisms in bacteria: insights derived from the study of the $\beta$-ketoadipate pathway. Curr. Top. Cell Regul. 12, 209-62   PUBMED
29 D'Argenio, D.A., L.A. Gallagher, C.A. Berg, and C. Manoil. 2001. Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 1466-1471   DOI   ScienceOn
30 Lau, G.W., B.C. Goumnerov, C.L. Walendziewicz, J. Hewitson, W. Xiao, S. Mahajan-Miklos, R.G. Tompkins, L.A. Perkins, and L.G. Rahme. 2003. The Drosophila melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71, 4059-4066   DOI   ScienceOn
31 Hogan, D.A. and R. Kolter. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296, 2229-2232   DOI   PUBMED   ScienceOn
32 Deziel, E., S. Gopalan, A.P. Tampakaki, F. Lepine, K.E. Padfield, M. Saucier, G. Xiao, and L.G. Rahme. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 55, 998-1014   DOI   ScienceOn
33 Dong, Y.H., L.H. Wang, J.L. Xu, H.B. Zhang, X.F. Zhang, and L.H. Zhang. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813- 817   DOI   ScienceOn
34 Deretic, V., M.J. Schurr, and H. Yu. 1995. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol. 3, 351-356   DOI   ScienceOn
35 Tan, M.-W, L.G. Rahme, J.A. Sternberg, R.G. Tompkins, and F.M. Ausubel. 1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA. 96, 2408-2413
36 Gallagher, L.A., S.L. McKnight, M.S. Kuznetsova, E.C. Pesci, and C. Manoil. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184, 6472- 6480   DOI   ScienceOn
37 Lepine, F., E. Deziel, S. Milot, and L.G. Rahme. 2003. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim. Biophys. Acta. 1622, 36-41   DOI   PUBMED   ScienceOn
38 Machan, Z.A., G.W. Taylorm T.L. Pitt, P.J. Cole, and R. Wilson. 1992. 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J. Antimicrob. Chemother. 30, 615-623   DOI
39 Dong, Y.H., A.R. Gusti, Q. Zhang, J.L. Xu, and L.H. Zhang. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68, 1754-1749   DOI   ScienceOn
40 Hogan, D.A., A. Vik, and R. Kolter. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54, 1212-1223   DOI   ScienceOn
41 Hoang, T.T., R.R. Karkhoff-Schweizer, A.J. Kutchma, and H.P. Schweizer HP. 1988. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 212, 77-86   DOI   ScienceOn
42 Rahme, L.G., E.J. Stevens, S.F. Wolfort, J. Shao, R.G. Tompkins, and F.M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899- 1902   DOI   PUBMED
43 Mashburn, L.M., A.M. Jett, D.R. Akins, and M. Whiteley. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187, 554- 566   DOI   ScienceOn
44 Frost, L.S. and W. Paranchych. 1977. Composition and molecular weight of pili purified from Pseudomonas aeruginosa K. J. Bacteriol. 131, 259-269   PUBMED
45 Jander, G., L.G. Rahme, and F.M. Ausubel. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 3843-3845   DOI   ScienceOn
46 Mahajan-Miklos, S., M.W. Tan, L.G. Rahme, and F.M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47-56   DOI   ScienceOn
47 Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott. 1995. Microbial biofilms. Ann. Rev. Microbiol. 49, 711-745   DOI   ScienceOn
48 Heo, Y.-J., K.S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages in various Pseudomonas aeruginosa strains. J. Microbiol. Biotech. in press