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ABSTRACT

Clinical and molecular phenotypes of asthma are complex. The main phenotypes of 
adult asthma are characterized by eosinophil and/or neutrophil cell dominant airway 
inflammation that represent distinct clinical features. Upper and lower airways constitute 
a unique system and their interaction shows functional complementarity. Although human 
upper airway contains various indigenous commensals and opportunistic pathogenic 
microbiome, imbalance of this interactions lead to pathogen overgrowth and increased 
inflammation and airway remodeling. Competition for epithelial cell attachment, different 
susceptibilities to host defense molecules and antimicrobial peptides, and the production of 
proinflammatory cytokine and pattern recognition receptors possibly determine the pattern 
of this inflammation. Exposure to environmental factors, including infection, air pollution, 
smoking is commonly associated with asthma comorbidity, severity, exacerbation and 
resistance to anti-microbial and steroid treatment, and these effects may also be modulated 
by host and microbial genetics. Administration of probiotic, antibiotic and corticosteroid 
treatment for asthma may modify the composition of resident microbiota and clinical 
features. This review summarizes the effect of some environmental factors on the upper 
respiratory microbiome, the interaction between host-microbiome, and potential impact of 
asthma treatment on the composition of the upper airway microbiome.
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INTRODUCTION

Asthma is a common chronic airway disease that affects people of all ages. Over 300 million 
people worldwide are affected by asthma, and the prevalence is high in children and in the 
elderly (1,2). After 40-50 years of age, most new cases of asthma are nonallergic and related 
to obesity, more severe disease, and having a lower lung function (3,4). Asthma-related 
morbidity and mortality are higher in older patients (1). The pathophysiology of asthma is 
complex, and involves airway inflammation that contributes to respiratory symptoms, airway 
hyperresponsiveness, and airflow limitation leading to a variety of more permanent changes 
in the airway which is commonly known as airway remodeling (5).
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PRR, pattern recognition receptor; SE-IgE, IgE 
against S. aureus superantigens.
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Asthma is a polygenic, multifactorial disorder and its etiology is related with interactions 
between genetic susceptibility, host factors, and environmental exposures. Genome-wide 
association studies of asthma have identified potential risk alleles and loci in different ethnic 
groups, providing an understanding of its genetic basis and functional role involved in 
disease pathogenesis (6). Genotype-specific risk factors are critical modifiers of the disease 
development, and host factors include age, gender, obesity and diet, whereas environmental 
exposures include tobacco smoke, air pollution, pollens, infection, mold and damp, animal 
exposure, occupational exposures, antibiotics, aspirin and non-steroidal anti-inflammatory 
drugs (7,8). These factors have been associated with either risk for or protection against 
upper and lower airway disease. Imbalance of resident microbial communities in the airways 
is affected by these factors and could be important in defining states of health or disease. 
Microbial exposures can be considered as plausible mechanisms for many of these associations, 
and the upper airway might be the direct site of important host-environment interactions (9).

According to the united airway concept, upper and lower airways constitute a unique system 
and their interactions show functional complementarity (10). In healthy adults, microbiome 
biomass decreases from the upper to lower respiratory tract, and community composition 
in the lung is not largely indistinguishable from upper airway microbiota (11). Microbiome 
sampling in upper airway is non-invasive and easy to assess (12), and may predict similar 
changes occurring in the lower airways. Our team showed that Staphylococcal enterotoxin 
sensitization was associated with asthma, especially in the adult and elderly asthma with 
sputum eosinophilia and chronic rhinosinusitis (CRS), which suggests that microbiome in 
upper airway could play an important role in the pathogenesis of asthma (13-15).

The Human Microbiome Project reported bacterial distribution by body sites as a reference, 
and the majority of the bacteria reside in the gastrointestinal tract with 29%, and the 
distribution in the airway is 14% (16). The total number of bacteria across the whole body of 
the adult is approximately 3.8×1013 and this number is close to human cells in the body (17). 
Although members of the host microbiota are referred to as commensals, their interaction 
with a host can be contextual according to host genetic and other risk factors.

Most recent studies have been using advanced molecular techniques such as 16S rRNA gene 
sequencing (partial genomes), shotgun sequencing (complete genomes), metabolomics (non-
protein small molecules), metaproteomics (protein) and metatranscriptomics (RNA) that 
are revolutionizing our understanding of the human microbiome (18). The pathobiological 
impact of the airway microbiome in asthma is only partially known. This review summarizes 
recent findings and emerging concepts on the role of environmental and genetic factors in 
the dysbiosis of upper airway microbiota, immune regulation of microbiome, and the effect of 
asthma therapies on the composition of nasal microbiome in adult asthma.

AIRWAY INFLAMMATION AND ASTHMA PHENOTYPES

Airway inflammation is a key component in the asthma pathogenesis and has been divided 
into two types based on dominant cells present in the airway: eosinophilic (T2) and 
neutrophilic (non-T2). T2 asthma can be further split into allergic eosinophilic asthma and 
non-allergic eosinophilic asthma, while non-T2 asthma can be divided in three inflammatory 
phenotypes based on sputum neutrophilia: neutrophilic, mixed granulocytic and 
paucigranulocytic (19).
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Allergic T2 inflammation is mediated by antigen specific Th2 cells that produce IL-4, IL-5, 
IL-9, and IL-13 resulting IgE-mediated mast cell and basophil degranulation and eosinophil 
activation (20). Th2 derived cytokines play an important role in airway eosinophilia, airway 
hyperreactivity and mucus hypersecretion, and IgE mediated mast cell activation induce 
airway inflammation, mucus production, smooth muscle cell contraction and airway 
remodeling (21). Biological actions of current monoclonal antibody and corticosteroid 
therapies are both effective in these patients (19), while nonallergic eosinophilic asthma 
patients have persistent high numbers of eosinophils despite treatment of corticosteroids 
(22). Air pollutants, microbes and glycolipids induce the release of epithelium-derived 
cytokines such as IL-33, IL-25, or TSLP, stimulating group 2 innate lymphoid cells (ILC2s) to 
secrete high amounts of IL-5 and IL-13, leading to eosinophilic inflammation (20). Though 
the secretion of IL-4 by ILC2 is disparate, IL-4 is critical to promote Th2 activation (23,24). 
A recent study revealed that ILC2s are accumulated predominantly in lung tissue and led to a 
pronounced T2 inflammation in the lung after allergen challenge (25). Eosinophilic asthma 
that develops in adulthood has a greater probability of chronic rhinosinusitis with nasal 
polyposis (CRSwNP) and it is often nonallergic (26).

Nonallergic asthma is defined with negative skin prick or in vitro-specific IgE tests to common 
allergens (27). The mechanisms contributing nonallergic asthma is less understood, and 
suggested mechanisms are hypersensitivity reactions to unidentified allergens such as fungi, 
recurrent or persistent infections, autoimmune mechanism, neutrophil mediated immune 
response or the activation of the IL-17-dependent pathway (28). Non-T2 neutrophilic asthma 
biomarkers are YKL-40 (chitinase-like protein) and IL-17 that are correlated with airway 
neutrophilia, obesity and asthma severity by inducing relative steroid unresponsiveness 
(29,30). Paucigranulocytic asthma patients have lower levels of fractional exhaled nitric oxide 
(FeNO), eosinophil cationic protein (ECP) and IL-8 in induced sputum, and 14.8% of these 
patients had poor asthma control despite the absence of inflammatory cells in their sputum 
(31). As similar to neutrophilic asthma, inhaled corticosteroid (ICS) treatment could be less 
effective in these patients (32). Th2/Th17 (IL-4 and IL-17) predominant asthmatics show 
blood eosinophilia, airway obstruction and hyperresponsiveness, and relative corticosteroid 
insensitivity (33). Also, in mixed granulocytic asthma patients, sputum IL-8, ECP and FeNO 
levels are elevated (31). Macrolides could be effective for non-T2 asthma patients through 
decreasing airway concentrations of IL-8 and neutrophil numbers and improving quality-of-
life scores (34).

Certain airway bacterial taxa have potential influence on immunity. For example, Streptococcus 
pneumoniae and Haemophilus influenzae increase IL-8 production through an NF-κB-dependent 
mechanism (35). Staphylococcus aureus manipulates the airway mucosal immunology by 
releasing IL-33 from respiratory epithelium and activates ILC2 and Th2 cells, mast cell 
degranulation, B-cell activation and IgE formation, and eosinophil stimulation leading 
to epithelial damage (36). Proteobacteria is associated with epithelial expression of Th17 
inflammation-related genes and negatively correlated with bronchial eosinophil (37).

HOST-MICROBIOTA AND INTERRELATIONSHIPS 
BETWEEN MICROBIOTA
Commensals are a critical and active inducer of immune regulatory responses. The epithelial 
mucosa and the dendritic cells (DCs), which are in continuous contact with the airway 
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lumen, and antimicrobial peptides (AMP) produced by immune cells play an important role 
in the response to environmental agents (Fig. 1).

Respiratory mucin proteins contribute to mucociliary clearance and host defense in human 
nasal mucosa and are (mucin 5AC [MUC5AC] and MUC5B) produced at similar levels in the 
upper and lower airways (38). In patients with asthma, the abnormal expression of MUC5AC, 
MUC5B, and MUC2 are the principal gel-forming mucins secreted predominantly in upper 
airway diseases (39), and MUC5AC is upregulated in the epithelium of asthmatic airways 
(40). Excessive mucus formation in upper airway may trap more inhaled micro-organisms 
and this, in turn might result ciliary dysfunction and give bacteria opportunity to adhere and 
promote biofilm formation (41). Both gram-positive and gram-negative bacterial products 
upregulate mucin genes expression and mucin secretion in respiratory epithelial cells (42), 
and microbial binding to mucin is essential for nasal colonization (43). Airway inflammation 
with Th2 cells stimulates mucus production by IL-13 in asthma (44). IL-13 has been shown 
to increase goblet cell numbers in airways that asthma patients experience severe mucus 
obstruction and airway hyperresponsiveness.

Airway epithelium produces AMP that contribute to barrier function, including human 
β-defensin 2 (hBD-2). hBD-2 is expressed in nasal mucosa and the expression is induced by 
microbial components, proinflammatory cytokines and TLR signaling pathway (45). hBD-2 
has chemotactic activity for T cells and immature DCs, and can activate mast cells leading to 
release histamine and prostaglandin D2 in allergic inflammation (46). The reduction of hBD-2 
expression affects the abnormal microbial colonization and immune responses in CRSwNP (47).

Pattern recognition receptors (PRRs) are essential for host and microbial interactions in 
nasal sinus mucosa. Sinonasal epithelial cells express 10 TLRs, and the signaling through 
TLRs initiates immune responses in the respiratory epithelium (48). TLRs bind to and 
recognize damage-associated molecular patterns and pathogen-associated molecular 
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Figure 1. Upper-airway dysbiosis and potential immunopathology in the airway inflammation. Persistent exposure to pathogens and other risk factors promotes 
airway inflammation through induction of both innate immune cells and adaptive immune cells. Although some risk factors are prominently related to upper 
airway dysbiosis, host factors are also considerably overlap in the development of airway diseases. Mucins in interaction with IgA and AMP contribute to innate 
immunity. Upon microbial signals, DCs activate antigen-specific naïve T cells which further drive development in effector Th cells. Tregs can suppress various 
effector Th cell subsets releasing anti-inflammatory and immunoregulatory cytokines, yet are downregulated in chronic airway inflammation. Th2 derived 
cytokine IL-13 upregulates the expression of mucin genes that initiate mucus hypersecretion. Pathogen invasion also induces epithelium-derived IL-6 and IL-8 
production via interaction with PRR leading to neutrophilic inflammation.



patterns such as peptidoglycan (TLR2 ligand), double-stranded RNA (TLR3 ligand) and 
LPS (TLR4 ligand) (49). Thus, TLR signaling induces distinct stimulation of cytokines, 
chemokines and costimulatory molecules based on the exposure (e.g., TLR2 and TLR4 
potentially induce the release of IL-1β and IL-8, whereas TLR3 and TLR7/8 may induce the 
production of IL-4, IL-5, and IL-13) (50). Genetic variations in TLR-related pathway genes are 
important factors for asthma development, and our previous study demonstrated that TLR2 
and CD14 impact the abundances of nasal microbiota and clinical phenotypes in adult asthma 
(51). Besides, bacterial pathogens express numerous virulence factors and seek to evade PRR-
induced innate immune responses that assist the bacterium colonize the host (52).

Th17 cells are also important in host defense against pathogen, and IL-17 signaling has a 
significant role in maintaining the nasal normal microbiome composition by reducing 
colonization with potentially pathogenic bacteria (53). Inhibitory Tregs play opposing roles 
by suppressing effector T-cells to limit excessive immune responses during infections. 
Downregulated Treg-related cytokines and elevated Th2 cytokines exhibited in eosinophilic 
CRS, whereas upregulated Treg cells and increased Th1 and Th17 cytokines presented in non-
eosinophilic rhinosinusitis (54). Therefore, microbiome dependent imbalance of Treg and Th 
cell subsets leads to different inflammatory patterns in airway diseases.

ILCs are preferentially located close to the epithelial barriers that are in direct contact 
with microbiota. ILC1s and ILC3s produce Th1 and Th17 cytokines, while ILC2s produce 
Th2 cytokines. In vivo, rhinovirus challenge induced IL-33 and T2 cytokines in bronchial 
and nasal fluid in asthma patients (55). In same study, culture of human T cells and ILC2s 
with supernatants of rhinovirus-infected epithelium led to IL-33-dependent Th2 cytokine 
production in vitro (55). ILC2s are elevated in the eosinophilic nasal polyp, and polyp ILC2 is 
reduced by systemic corticosteroid treatment (56).

Members of the microbiota interact with each other in mutualistic or antagonistic way. 
Particularly, the commensal genus Dolosigranulum spp. is responsible for the acidification of 
the local environment which promote the expansion of Corynebacterium spp. (57), while this 
effect inhibits the growth of acidophobic bacteria S. aureus (58). In addition, S. aureus forms 
polymicrobial biofilm with Candida albicans and enhance antimicrobial resistance (59) resulting 
persistent inflammatory changes in the upper airway. Also, common respiratory bacteria H. 
influenzae and Pseudomonas aeruginosa can promote the production of pro-inflammatory cytokines 
in response to subsequent infection with respiratory syncytial virus in airway epithelial cell (60).

NORMAL UPPER AIRWAY MICROBIOTA

The Human Microbiome Project Consortium evaluated microbiome composition sampling 
at 18 body sites from 242 healthy adults (61). The most abundant genera in the anterior 
nares were Propionibacterium (Propionibacterium acnes), Corynebacterium (Corynebacterium 
accolens) and Staphylococcus, and abundant pathogenic species were P. acnes, S. aureus and 
S. epidermidis. Similarly, Zhou et al. (62) determined prevalent genera in the nasal cavity 
of 236 healthy adults, and it included Staphylococcus, Propionibacterium, Corynebacterium, and 
Moraxella. When healthy adults sinus microbiota was assayed with CRS nasal samples, genera 
Corynebacterium and Staphylococcus were common in the majority of the nasal samples including 
healthy controls (63). These findings suggest that a healthy nasal cavity contains various 
opportunistic pathogenic bacteria within genera and potential to be as reservoir.
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INFLUENTIAL FACTORS ON THE COMPOSITION OF 
UPPER AIRWAY MICROBIOME
Smoking
In asthma patients, tobacco smoking is associated with more severe asthma symptom, 
frequent exacerbation, and corticosteroid insensitivity (64). Persistent smoking exposure 
enhances mixed Th1/Th2 immune response that develops more severe asthma phenotype, 
and induces neutrophils and oxidative stress which cause resistance to corticosteroids (65). 
In general, smoking induces pro-inflammatory cytokines as well as IgE production, and 
alters immune cells such as alveolar macrophages, neutrophils, lymphocytes and NK cells 
which are the major cells in pathogen clearance and defense against pathogens (66).

Cigarettes are direct source of potentially pathogenic microorganisms that include fifteen 
different classes of bacteria and wide range of pathogenic organisms including Acinetobacter, 
Bacillus, Burkholderia, Clostridium, Klebsiella, Pseudomonas aeruginosa, and Serratia (67). In healthy 
adults nasopharynx, smoking status is positively associated with Corynebacterium and 
Staphylococcus (68). In airway exposure study, the presence of nine bacterial genera in pharynx 
was correlated positively with smoking: Actinomyces, Actinobacillus, Anaerococcus, Peptoniphilus, 
Staphylococcus, Streptococcus, Gemella, Psychrobacter, and Treponema (69). In a univariate analysis 
and a machine learning approach, nasopharyngeal microbial communities were compared 
between smoking and non-smoking healthy adults (70). Haemophilus spp., Campylobacter 
spp. and Abiotrophia spp. were dominant in smokers, whereas only Shigella spp. was lower 
in nasopharyngeal communities of smokers compared with non-smokers. Newly detected 
genera with increased abundance in the nasopharynx of smokers included Eggerthella, 
Erysipelotrichaceae I.S., Dorea, Anaerovorax, and Eubacterium spp. that constitute gram-positive 
anaerobic bacterial colonization in the nasopharynx (70). Recently, we reported that genera 
Corynebacterium, Propionibacterium, Streptococcus, Haemophilus and Rothia in the upper airway were 
correlated with the exposure to smoking and clinical phenotypes in adult asthma (51). In 
different studies, although smoking cessation improved asthma symptom and lung function 
in smoking asthma patients (64), it did not change the sputum bacterial community in 12-wk 
follow-up study (71). Thus, in addition to smoking and cessation duration, distinct bacterial 
colonization in smokers and potential influence of airway microenvironment on particular 
microbiota should be carefully considered in future research (72).

Air pollution
Air pollution is associated with the prevalence of adults asthma (with particulate matter 
[PM] of less than 10 μm [PM10] and nitrogen dioxide), decreased lung function, asthma 
severity and exacerbation (with ozone, sulfur dioxide, nitrogen dioxide) (73). PM contributes 
to airway inflammation through genetic variation, oxidative stress induction, airway 
epithelial barrier disruption, altered cell signaling pathways, production of T2 cytokines, and 
inflammatory cell recruitment (74).

Compositions of total airborne bacteria and pathogenic bacteria have been measured 
in different PM sizes and air quality levels (75). The dominant bacterial phyla in all the 
airborne PM samples were Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, 
and Bacteroidetes. The most common classes were Alphaproteobacteria, Actinobacteria, 
Betaproteobacteria, Oscillatoriophycideae and Clostridia. The most abundant genera 
were Thiobacillus, Methylobacterium, Rubellimicrobium, and Paracoccus. The relative abundance 
(RA) of pathogenic bacteria was different in PM10 samples from those of particulate 
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matter of less than 2.5 μm (PM2.5) and total suspended particulate. Staphylococcus, Bacillus, 
Clostridium, Enterobacter, and Klebsiella were the dominant pathogenic genera in all the airborne 
PM samples. The proportions of the total and pathogenic bacterial community were 
correlated with wind scale, relative humidity, carbon monoxide, sulfur dioxide and ozone 
concentrations (75).

Exposure to high levels of PM2.5/PM10 critically alters airway microbiota composition. 
Qin et al. (69) studied pharyngeal microbiota in 83 subjects after exposure to high 
concentrations of PM2.5/PM10. The RA of 38 phyla increased in the post-smog samples, 
such as Firmicutes, Fusobacteria, and Actinobacteria, and 11 newly detected phyla including 
Caldiserica, Chlamydiae, Parcubacteria, Atribacteria, and Microgenomates (69). A total of 
559 genera were increased including Leptotrichia, Corynebacterium, Veillonella, Dolosigranulum, 
unidentified-Chloroplast, Moraxella, Gemella, Actinomyces, Granulicatella, and Haemophilus. Main 
recognized prevalent respiratory pathogens in the post-smog swabs were Streptococcus, 
Haemophilus, Moraxella, and Staphylococcus, while significantly reduced genus was Neisseria 
after exposure to smog for two days. At the species level, RA of H. influenzae and Moraxella 
catarrhalis were dominant in the smog exposed samples (69). In a study on the association 
among air pollutants, immune markers and adult-onset asthma, 15% of the effect of air 
pollution on the risk of adult-onset asthma was mediated through immune system (76). 
IL-1RA was suggested to be associated with adult-onset asthma and air pollutants in the 
study. IL-1RA has an anti-inflammatory effect and its functional role was identified in the 
inflammatory process of asthma (77) and fungal-associated allergic airway inflammation 
(78). Although air pollutants are well known to cause asthma exacerbations, there is lack 
of supporting evidence on how air pollution may influence on upper airway microbiome in 
adult asthma.

Host and microbial genetics
Host genetic factors can contribute to the susceptibility of asthma. Recent advances in 
sequencing technology bring enormous genetic variation data from a large number of 
individuals. Igartua et al. (79) performed genome-wide association studies (GWAS) to 
determine host-microbial interaction using 16S rRNA gene sequencing of nasal swabs in 
144 adult Hutterite population and whole genome sequencing data of the same population. 
They identified 37 microbiome quantitative trait loci which was associated with the RA 
of 22 genera and highly contained genes involved in mucosal immunity pathways. The 
most significant association was between RA of Dermacoccus (phylum Actinobacteria) and 
an intergenic variant near TINCR (rs117042385), a long non-coding RNA that binds to 
peptidoglycan recognition protein 3 (PGLYRP3) mRNA. Another association was between the 
RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) and a missense 
variant in PGLYRP4 (rs3006458), a pattern receptor that binds to murein peptidoglycan 
of gram-positive bacteria. Currently no other research has done for host-microbiome 
association in adults' upper airway.

We previously observed higher composition of microbiome genes in non-asthmatics that 
are related with lysine degradation, N-glycan biosynthesis, caprolactam degradation, and 
peroxisome proliferator-activated receptor signaling pathway, and prevalent genes associated 
with pentose phosphate pathway, LPS biosynthesis, flagella assembly, and bacterial chemotaxis 
in young adult asthmatics (80), revealing possible role of microbiome in adult asthma.
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MICROBIOTA COMPOSITION IN UPPER AIRWAY DISEASE

We summarized the upper airway dysbiosis in patients with CRS (with/without nasal 
polyposis [NP]) and asthma in Fig. 2. In a recent study, CRSwNP patients contained reduced 
Corynebacterium and Dolosigranulum in the nasal sample compared to healthy controls (81). 
Bacterial genera such as Lactobacillus, Escherichia-Shigella, Turicibacter, Clostridium, Enterococcus, 
and Romboutsia were positively correlated with the severity of CRSwNP, while no correlation 
observed with age, body mass index and symptom score (81). Another group compared 
bacterial communities in nasal tissues of CRSwNP with and without asthma and healthy 
controls. Interestingly, CRSwNP patients had significantly enriched H. influenzae, while 
healthy controls had higher P. acnes. S. aureus, common colonizer of the upper airways 
that aggravate allergy and induce IgE formation, was dominant in the CRSwNP without 
asthma group, and Escherichia coli was higher in CRSwNP with asthma group (82,83). E. coli 
was positively correlated with ECP and IL-5 in the nasal polyp tissues which promote T2 
inflammation in CRSwNP patients.

UPPER AIRWAY MICROBIOTA IN ADULT ASTHMA

Microbiota composition in asthma phenotypes and upper airway varies between research 
articles due to population characteristics including age, sex, ethnicity, diet, geography, 
and study design, sampling site, technique, analysis method and disease status. As asthma 
is a heterogenous disease with different phenotypes and variable clinical manifestations, 
understanding airway microbiome diversity in disease progression and propagation is crucial 
and phenotype-specific alterations are summarized in Table 1.

Asthmatic patients with CRS had a lower abundance of Prevotella, Fusobacterium, and 
Campylobacter species, and more abundant of Staphylococcus, Acinetobacter, and Ralstonia 
species compared with non-asthmatic patients with CRS (84). Hilty et al. (85) identified 
nasal microbial communities in adults with asthma, chronic obstructive pulmonary disease 
(COPD) and healthy controls as part of their study. When nasal microbiota was compared 
with oropharynx and left upper lobe, nasal specimens were characterized by Actinobacteria 
and Firmicutes. However, the authors did not report the comparisons between the nasal 
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microbiota of asthmatics versus control groups. Previously we have shown a higher 
abundance of uncultured Corynebacteriales in non-asthmatic young adults, and a higher 
abundance of Moraxella in non-asthmatic elderly individuals (80). The comparison of upper 
airway microbiota between young adults and elderly also showed different composition 
including Staphylococcus, Propionibacterium, and Moraxella. The high abundances of Prevotella, 
Neisseria, and Fusobacterium were correlated with forced expiratory volume in 1 s (FEV1) in 
young adults, whereas Burkholderia and Psychrobacter and Corynebacterium revealed contrary 
relationship with FEV1 among elderly individuals.

In an association study of nasal microbiome in asthma exacerbation and healthy controls, 
taxa from Proteobacteria and Bacteroidetes were dominant in subjects with exacerbated and 
non-exacerbated asthma relative to healthy controls (86). More specifically, enrichment of 
Prevotella buccalis, Alkanindiges hongkongensis, and Gardnerella vaginalis were identified in patients 
with exacerbated asthma, while Dialister invisus was greater in patients with non-exacerbated 
asthma. According to Yang et al., asthmatic CRS patients had prevalent RA of the Streptococcus 
genus, and asthmatics with at least one emergency department visits were associated with 
higher RA of Proteobacteria phylum (Burkholderia spp.) (87).

Microbiome community in lower airways of adult asthmatic patients were reviewed to 
compare with upper airway microbiome. Similar to nasal microbiota, reduced prevalence 

9/18https://doi.org/10.4110/in.2021.21.e19

Upper airway microbiome in asthma

https://immunenetwork.org

Table 1. Clinical relevance of upper airway microbiota in adult asthma
Cohort Subjects Collection site Microbiota variation Phenotype association Ref.
CRSwNP 59 CRSwNP and 27 controls Nasal swab •  CRSwNP: reduction of Corynebacterium and 

Dolosigranulum
Lactobacillus, Escherichia-
Shigella, Turicibacter, Clostridium, 
Enterococcus, and Romboutsia are 
associated with severity of CRSwNP.

(81)

CRSwNP with 
and without 
asthma

21 CRSwNP patients without 
asthma, 20 CRSwNP patients 
with co-morbid asthma, 17 
healthy subjects

Nasal swab • Enrichment in each group: CRSwNP is associated with high 
concentrations of IgE, SE-IgE, and 
IL5.

(82)
CRSwNP: H. influenzae
Healthy group: P. acnes
CRSwNP without asthma: S. aureus
CRSwNP with asthma: E. coli

Asthma with 
and without 
CRS

56 patients with CRS and 26 
control subjects

Sinus swabs •  Asthma patients with CRS: lower abundance 
of Prevotella, Fusobacterium, Campylobacter 
and higher Staphylococcus, Acinetobacter, 
Ralstonia compared with non-asthmatic 
patients with CRS

Higher relative abundances of 
Actinobacteria can be predictive of 
better surgical outcome of CRS.

(84)

Asthma and 
COPD

5 patients with COPD, 11 
patients with asthma and 8 
controls

Nose, 
oropharynx, left 
upper lobe

•  Asthma and COPD: reduction of 
Bacteroidetes (Prevotella spp.).

•  Nasal samples were characterized by 
Actinobacteria and Firmicutes.

NA (85)

Young adult 
and elderly 
asthma

60 patients with asthma and 
20 controls

Nasopharyngeal 
swab

• Young adult asthma: high Proteobacteria

•  Young non-asthma: high uncultured 
Corynebacteriales

• Elderly non-asthma: high Moraxella

•  Young adult: Prevotella, Neisseria, 
Fusobacterium negatively 
correlated with FEV1.

•  Elderly: Burkholderia and 
Psychrobacter positively correlated 
with FEV1, while Corynebacterium 
negatively correlated with FEV1.

(80)

Asthma 72 exacerbated asthma, 31 
non-exacerbated asthma and 
21 healthy controls

Nasal swab •  Asthma: high Bacteroidetes and 
Proteobacteria

•  Prevotella buccalis, Gardnerella 
vaginalis and Alkanindiges 
hongkongensis are associated with 
exacerbated asthma.

•  Dialister invisus is associated with 
non-exacerbated asthma.

(86)

Asthma 111 CRS: 46 asthma, 65 non-
asthma

Nasal swab • Asthmatic CRS: high Streptococcus genus Asthmatics with emergency visit 
had high Proteobacteria phylum 
(Burkholderia spp.)

(87)

SE-IgE, IgE against S. aureus superantigens; NA, not applicable.



of sputum Bacteroidetes and Fusobacteria in patients with severe and non-severe asthma, 
and increased prevalence of Firmicutes were identified in severe asthma patients (88). 
In addition, higher abundance of Lactobacillus (Firmicutes), Pseudomonas (Proteobacteria) 
and Rickettsia (Proteobacteria) in asthmatic patients, and higher abundance of Prevotella 
(Bacteroidetes), Streptococcus (Firmicutes) and Veillonella (Firmicutes) were detected in healthy 
controls when measured in endobronchial brush samples (89).

These findings suggest that genera Dolosigranulum and Prevotella are more likely play protective 
effect against asthma, whereas enriched genus Streptococcus, and phyla Proteobacteria and 
Firmicutes in asthmatics are probably influencers of asthma development and disease severity.

THERAPEUTIC EFFECT ON THE COMPOSITION OF UPPER 
AIRWAY MICROBIOTA
Probiotics
Microbial colonization begins in utero and the composition is modified by consumption of 
probiotics during pregnancy, breastfeeding, mode of delivery, early respiratory infections 
(90), antibiotics, environmental factors and genetic/epigenetic regulation (9). Numerous 
studies reported the influential effect of the upper airway microbiome in the development 
of early onset rhinitis, wheeze and chronic inflammation in upper airway (91), and the 
symptoms were improved by probiotics intake (92). Probiotics are live microorganisms 
that provide health benefits to the host through promotion of epithelial barrier function, 
regulation of the mRNA levels of TLRs, and stimulate Tregs and reduce Th1 and Th2 cells 
development (93).

In a double-blind, randomized, placebo-controlled study, 49 young adults with perennial 
allergic rhinitis (AR) received either Lactobacillus acidophilus strain L-92 in fermented milk 
or without lactic acid bacteria (94). The result shows that oral administration of L-92 
significantly improved nasal symptom-medication score, and decreased the scores of 
swelling and color of the nasal mucosa at 6 and 8 weeks of ingestion. However, there 
were no significant differences in serum specific IgE levels nor in Th1/Th2 ratio between 
groups (94). In different placebo-controlled study, co-administration of allergen specific 
immunotherapy with Clostridium butyricum significantly enhanced the therapeutic effect on AR 
(lowered 81.2% of the AR symptoms) (95). This combination effect decreased nasal symptom 
score, medication score, serum specific IgE, Th2 cytokines and skin prick test index, and 
elevated the frequency of regulatory B cell. When the immune modulatory effect of probiotic 
Bifidobacterium lactis NCC2818 was examined in individuals suffering from seasonal AR, 
concentrations of Th2 cytokines and total nasal symptom scores, and basophil cell activation 
were significantly lower in the probiotic group (96). Probiotic (Lactobacillus gasseri KS-13, 
Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) intake during spring allergy 
season improved rhinoconjunctivitis-specific quality of life in individuals with seasonal 
allergy (97). Although majority of the findings suggest the beneficial effect of probiotic 
treatment for CRS, nasal administration of honeybee lactic acid bacteria did not reduce 
symptom severity or inflammatory biomarkers and did not affect commensal bacteria of the 
nasal cavity (98). Due to the distinct study design, probiotic species and strains, administered 
dose and timing, the studies may represent inconsistent results which needs to be considered 
in future studies. Also, individual genetic variation, age, sex and resident microbiota should 
be taken into consideration when evaluating the effect of probiotics.
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Antibiotics
Prolonged medical therapies such as corticosteroids, antihistamines, and antibiotics are the 
main therapy for inflammatory sinonasal disorders. Antibiotic perturbs the original microbiome 
composition as it damages bacterial cell wall, inhibits bacterial growth, and alters genes 
and protein fluxes (99). In addition to its anti-microbial effect, antibiotics also have an anti-
inflammatory and immunomodulatory effects. Macrolide downregulates pro-inflammatory 
cytokine (IL-8) (100) and inhibits the activation of transcriptional factors (NF-κB, AP-1) (101) in 
human epithelial cells, which are important regulators in the inflammatory process.

The most common microbiota influenced by the antibiotic treatments are phyla 
Actinobacteria (Bifidobacterium-by 40 antibiotic treatments), Bacteroidetes (Bacteroides-30), 
Firmicutes (Faecalibacterium-30), and Proteobacteria (Escherichia-13) (102). Antibiotics for 
respiratory tract infection such as azithromycin and clarithromycin alone affect less than six 
genera each, whereas a combination of these macrolide antibiotics could alter the abundance 
of 15 genera (102).

The evidence supporting antibiotic efficacy in asthma symptoms and exacerbation 
are inconsistent. Although treatment with azithromycin in eosinophilic NP improved 
polyposis staging and quality-of-life (103), and decreased asthma exacerbation in persistent 
symptomatic asthma patients (104), these are not in the same line with other report 
(105). The previous study of sinus microbiota in CRS have shown that antibiotic use and 
asthma are associated with loss of microbial diversity and high S. aureus abundance (106). 
A combination of antibiotics and anti-inflammatory therapy significantly reduced sinus 
microbiota biodiversity in post-operative maxillary sinuses (107). Although the sinus bacterial 
composition after treatment was unique to each individual, the expansion was observed in 
Pseudomonas, non-aureus Staphylococcus, Corynebacterium, Propionibacterium, Haemophilus, and Delftia.

It is essential to choose pathogen-selective antibiotics in order to minimize disturbance 
to the microbiome, as inappropriate antibiotic treatments are able to shift the commensal 
microbiota to long-term alternative dysbiotic states, resulting in a variety of negative health 
consequences (108). As most common antibiotics reduce beneficial resident microbiota 
(Faecalibacterium, Bifidobacterium, and Blautia), it is crucial to consider combination or selective 
effect of antibiotics, administration type, concentration and resistance of antibiotics in 
clinical practice.

Corticosteroids
Inhaled corticosteroids are the most effective medication for asthma. In the meta-analysis 
study, the intranasal corticosteroid medication improved asthma-specific outcome measures 
in patients with both AR and asthma (109). The impact of intranasal corticosteroids in the 
management of CRS and asthma shows the alteration of nasal microbiota composition. In 
healthy adults with and without chronic non-infectious rhinitis, the administration of topical 
corticosteroid spray (mometasone furoate, 200 µg per day) for 1 month increased the RA of 
staphylococci (phylum Firmicutes), while suppressing Moraxella spp. (phylum Proteobacteria) 
and streptococci (phylum Firmicutes) in the nasal cavity (110). In asthma, nasal abundance 
of P. buccalis, A. hongkongensis, G. vaginalis, and D. invisus remained associated with asthma in 
multivariate models adjusted for steroids (86). In contrast, inhaled and oral corticosteroid 
treatments affected the alpha and beta diversity, and increased abundance of Proteobacteria 
and decreased abundance of Bacteroidetes and Fusobacteria in the lower airway samples 
of asthmatics patients (89). Effect of corticosteroids in lung microbiome concerning to 
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asthma has been summarized in another review and has shown strong impact on bacterial 
community which in turn contributes to corticosteroid responsiveness (111).

CONCLUDING REMARKS

Commensal microbiota plays an important role to maintain the host-microbe mutualism. 
Nasal commensals are primarily responsible for the health of respiratory tract. The microbial 
imbalance could have a causative role in the pathogenesis of upper and lower airway diseases 
including asthma. Environmental exposures, genetics and medications could shape the 
composition of upper airway microbiome through epithelial barrier disruption and the 
modulation of innate and adaptive immune response. Current review focused on most recent 
findings that assessed the composition of upper airway microbiota in adult asthma patients 
using 16S rRNA gene sequencing. However, we should count that genus can have a wide 
range of strains which are genomically distinct and may have either protective or disease-
causing effects. Therefore, further investigation is warranted to perform network approaches 
to better understand the complex molecular mechanisms involved in these processes and 
develop effective therapies for asthma.
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