• Title/Summary/Keyword: Horizontal permeability

Search Result 107, Processing Time 0.025 seconds

Analysis of Consolidation considering Uncertainties of Geotechnical Parameters and Reliability method (지반특성의 불확실성과 신뢰성 기법을 고려한 압밀해석)

  • Lee, Kyu-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.138-146
    • /
    • 2007
  • Geotechnical performance at the soft ground is strongly dependent on the properties of the soil beneath and adjacent to the structure of interest. These soil properties can be described using deterministic and/or probabilistic models. Deterministic models typically use a single discrete descriptor for the parameter of interest. Probabilistic models describe parameters by using discrete statistical descriptors or probability distribution density functions. The consolidation process depends on several uncertain parameters including the coefficients of consolidation and coefficients of permeability in vertical and horizontal directions. The implication of this uncertain parameter in the design of prefabricated vertical drains for soil improvement is discussed. A sensitivity analysis of the degree of consolidation and calculation of settlements to these uncertain parameters is presented for clayey deposits.

Engineering Characteristics of Sam Cheok Organic Soil (삼척 유기질토의 공학적 특성)

  • Kim, Sang-Gyu;Choe, In-Geol;Park, Yeong-Mok
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-34
    • /
    • 1996
  • This paper presents the engineering characteristics of the Samcheok organic soil which contains a large portion of organic matter and high natural water content. A series of lab tests shows that the measured liquid limit is quite different depending on preparing methods of specimens. The values tested with natural condition are higher up to 4 times than thole of the oven dry specimen. It is shown that the organic soils fail at large strain and do not show peak stress in the stress strain relationships. Also strength increase ratios, which are measured 0.43 to 0.65 in this tests, are significantly higher than those of the soft clay without organic matter. The consolidation tests indicate that the verti'cal and horizontal Permeabilities are almost the same. For the remolded samples is reduced from 112 to 116 of the vertical permeability An increase of organic matter or water content of the organic soils results in an increase of the coefficient of secondary consolidation. The increase rate is slow below 15 percents of the organic contents while the rate becomes higher above the value.

  • PDF

A Study on the Wearing Conditions of Motorcycle Jackets for Quick Service Transporter (퀵서비스 운송업자 모터사이클 재킷 착용실태 조사)

  • Sohn, Jae Min;Choi, Hei Sun;Kim, Eun Kyung
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.247-257
    • /
    • 2015
  • This study conducted a questionnaire survey on the real condition of clothing with focus on related to general motorcycle wear and motorcycle jacket targeting a quick service carrier affiliated with a quick service business in Seoul. In addition, this study is aimed at providing basic data on developing the motorcycle jacket, whose motional flexibility, safety and functionality are excellent, exclusively for a quick service carrier by grasping inconveniences and problems and deducting improvements on the basis of the questionnaire survey. This study, on the basis of the questionnaire survey results, grasped the general part related to quick service and motorcycle wear, such as their general matters, whether they were having on the motorcycle wear in the middle of doing business, whether it's necessary to wear the motorcycle wear, where they had a driving accident, and kinds of external injuries, etc. From the gathered results of analysis of the collected questionnaires, the item which got the lowest satisfaction was the inconvenience from the chafed front neck when driving. Besides, the results showed carriers' complaints like the elbow part felt tight, discomfort in the horizontal movement of the shoulders or back, and wind admission in between zippers. In addition, the respondents showed complaints in the item about hygroscopic property and air permeability at the armpits and back part, and 5 items about material flexibility, wind shielding property, living water repellency, weighty sensation, and night visibility were found to be low in respondents' satisfaction.

High-precision modeling of uplift capacity of suction caissons using a hybrid computational method

  • Alavi, Amir Hossein;Gandomi, Amir Hossein;Mousavi, Mehdi;Mollahasani, Ali
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-280
    • /
    • 2010
  • A new prediction model is derived for the uplift capacity of suction caissons using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA. The predictor variables included in the analysis are the aspect ratio of caisson, shear strength of clayey soil, load point of application, load inclination angle, soil permeability, and loading rate. The proposed model is developed based on well established and widely dispersed experimental results gathered from the literature. To verify the applicability of the proposed model, it is employed to estimate the uplift capacity of parts of the test results that are not included in the modeling process. Traditional GP and multiple regression analyses are performed to benchmark the derived model. The external validation of the GP/SA and GP models was further verified using several statistical criteria recommended by researchers. Contributions of the parameters affecting the uplift capacity are evaluated through a sensitivity analysis. A subsequent parametric analysis is carried out and the obtained trends are confirmed with some previous studies. Based on the results, the GP/SA-based solution is effectively capable of estimating the horizontal, vertical and inclined uplift capacity of suction caissons. Furthermore, the GP/SA model provides a better prediction performance than the GP, regression and different models found in the literature. The proposed simplified formulation can reliably be employed for the pre-design of suction caissons. It may be also used as a quick check on solutions developed by more time consuming and in-depth deterministic analyses.

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

The Influence of K-ratio and Seepage Velocity on Piping Occurrence (Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구)

  • Huh, Kyung-Han;Chang, Ock-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.

Evaluation of Dissipation Behavior of Excess Pore Pressure in Liquefied Sand Deposit Using Centrifuge Tests (원심모형실험을 이용한 액상화 모래지반의 과잉간극수압 소산거동 분석)

  • Kim Sung-Ryul;Ko Hon-Yim;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • Soil liquefaction occurs by complex dynamic interaction between soil particles and pore fluid. Therefore, experimental researches have been widely performed to analyze liquefaction phenomena. In this research, centrifuge tests were performed to analyze the liquefaction behavior of horizontal sand ground. Centrifugal acceleration was 40g and the thickness of model ground was 25cm, which simulates 10m thickness in prototype scale. Viscous fluid was used as pore fluid to remove the time scaling difference between dissipation and dynamic shaking. Test results showed that the dissipation of excess pore pressure is the combined behavior of solidification and consolidation. In addition, the solidification rate, the ground acceleration amplitude, and the dynamic permeability during solidification were influenced by the confining pressure.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir (고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구)

  • Lee, Youngsoo;Choi, Haewon;Lee, Jeonghwan;Han, Jeongmin;Ryou, Sangsoo;Roh, Jeongyong;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.515-522
    • /
    • 2007
  • In this study we have attempted to evaluate the technical feasibility of "BB-HY", which is depleted gas reservoir as a gas storage field, using the commercial compositional simulator "ECLIPSE 300". The "BB-HY" reservoir has an initial gas in place of 143 BCF which is relatively small, and its porosity and permeability are 19.5% and 50 md, respectively. For "BB-HY" gas reservoir, we have performed a feasibility analysis by investigating the cushion gas (or working gas), converting time to gas storage field, operation cycle, number of wells and the possible application of horizontal borehole as well. From the simulation results, it was found that the amount of cushion gas in "BB-HY" reservoir is required at least 50% of IGIP in order to operate stably as gas storage field. When one produces gas for longer time and hence the remaining gas in reservoir is less than optimal cushion gas, no technical problem was occurred as long as additional cushion gas is injected up to the optimal cushion gas. In the case of changing the operation cycle into producing gas for three months during winter season from producing five months, the result shows that either the cushion gas should be greater than 60% or the more number of wells should be drilled. Meanwhile, from the results of sensitivity analysis for the number of wells, in cases of operating six or eight vertical wells, the stable reproduction of the injected gas can not be possible in "BB-HY" gas reservoir since the remaining gas in reservoir is increased. Therefore, in "BB-HY" reservoir, at least ten vertical wells should be drilled for the stable operation of gas. This time, when three horizontal wells are additionally drilled including the existing two vertical wells, it was found that the operation of injection and reproduction of gas is relatively stable in "BB-HY" gas reservoir.