• Title/Summary/Keyword: Homotopy

Search Result 203, Processing Time 0.024 seconds

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES II.

  • Jeong, Myung-Hwa
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.193-198
    • /
    • 2009
  • In the previous work [5] we have determined the group ${{\varepsilon}_{\sharp}}^{dim+r}^{dim+r}(X)$ for $X\;=\;M(Z_q,\;n+1){\vee}M(Z_q,\;n)$ for all integers q > 1. In this paper, we investigate the group ${{\varepsilon}_{\sharp}}^{dim+r}(X)$ for $X\;=\;M(Z{\oplus}Z_q,\;n+1){\vee}M(Z{\oplus}Z_q,\;n)$ for all odd numbers q > 1.

  • PDF

Approximate solution of fuzzy quadratic Riccati differential equations

  • Tapaswini, Smita;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.255-269
    • /
    • 2013
  • This paper targets to investigate the solution of fuzzy quadratic Riccati differential equations with various types of fuzzy environment using Homotopy Perturbation Method (HPM). Fuzzy convex normalized sets are used for the fuzzy parameter and variables. Obtained results are depicted in term of plots to show the efficiency of the proposed method.

HOMOTOPY RESULTS FOR THE BETTER ADMISSIBLE CHANDRABHAN TYPE MULTIMAPS

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.297-305
    • /
    • 2022
  • First, we generalize homotopy results of O'Regan [6] for Mönch type multimaps to Chandrabhan type multimaps. Second, we show that the better admissible Chandrabhan type multimaps have fixed point properties whenever their ranges are Klee approximable. Finally, we give examples of essential maps for various class of multimaps including 𝚽-condensing multimaps.

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

DIGITAL TOPOLOGICAL PROPERTY OF THE DIGITAL 8-PSEUDOTORI

  • LEE, SIK;KIM, SAM-TAE;HAN, SANG-EON
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.411-421
    • /
    • 2004
  • A digital $(k_0,\;k_1)$-homotopy is induced from digital $(k_0,\;k_1)$-continuity with the n kinds of $k_i$-adjacency relations in ${\mathbb{Z}}^n$, $i{\in}\{0,\;1\}$. The k-fundamental group, ${\pi}^k_1(X,\;x_0)$, is derived from the pointed digital k-homotopy, $k{\in}\{3^n-1(n{\geq}2),\;3^n-{\sum}^{r-2}_{k=0}C^n_k2^{n-k}-1(2{\leq}r{\leq}n-1(n{\geq}3)),\;2n(n{\geq}1)\}$. In this paper two kinds of digital 8-pseudotori stemmed from the minimal simple closed 4-curve and the minimal simple closed 8-curve with 8-contractibility or without 8-contractibility, e.g., $DT_8$ and $DT^{\prime}_8$, are introduced and their digital topological properties are studied by the calculation of the k-fundamental groups, $k{\in}\{8,\;32,\;64,\;80\}$.

  • PDF

Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application

  • Qian, Y.H.;Zhang, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • In this paper, the optimal extended homotopy analysis method (OEHAM) is introduced to deal with the damped Duffing resonator driven by a van der Pol oscillator, which can be described as a complex Multi-Degree-of-Freedom (MDOF) nonlinear coupling system. Ecumenically, the exact solutions of the MDOF nonlinear coupling systems are difficult to be obtained, thus the development of analytical approximation becomes an effective and meaningful approach to analyze these systems. Compared with traditional perturbation methods, HAM is more valid and available, and has been widely used for nonlinear problems in recent years. Hence, the method will be chosen to study the system in this article. In order to acquire more suitable solutions, we put forward HAM to the OEHAM. For the sake of verifying the accuracy of the above method, a series of comparisons are introduced between the results received by the OEHAM and the numerical integration method. The results in this article demonstrate that the OEHAM is an effective and robust technique for MDOF nonlinear coupling systems. Besides, the presented methods can also be broadly used for various strongly nonlinear MDOF dynamical systems.