• Title/Summary/Keyword: Holographic Lithography

Search Result 28, Processing Time 0.027 seconds

A Study on the Development of Chalcogenide-based ReRAM{Resistance RAM) Device with Holographic Lithography Method (Holographic Lithography 방법을 적용한 Chalcogenide-based ReRAM(Resistance RAM) 소자의 개발에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1014-1017
    • /
    • 2009
  • In this study, we studied the nature of thin films formed by holographic photodoping chalcogenide thin films with for use in programmable metallization cell devices(PMC), a type of ReRAM. We formatted straight conduction pathway from the internal interferences of the diffraction gratings which is builded by the holographic lithography method. We investigated the resistance change of solid-electrolyte chalcogenide thin films varied in the applied voltage bias direction from about $1\;M{\Omega}$ to several hundreds of $\Omega$. The switching characteristics of the devices applied holographic lithography method was more improved than ultraviolet exposure condition. As a result of improved resistance change effects, we can analogize that the diffraction gratings is a kind of pattern for straight conduction pathway formation inside the chalcogenide thin films.

Fabrication of 2-D photonic crystal with holographic lithography (홀로그램피 리소그래피 방법을 이용한 2차원 포토닉 크리스탈 제작)

  • Ju, Long-Yun;Nam, Ki-Hyun;Kim, Hyun-Koo;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.162-163
    • /
    • 2007
  • In this paper, we fabrication of 2-D photonic crytal using holographic lithography. We used Ag doped chalcogenide AsGeSeS film and He-Ne (632.8nm) (P:P) Polarized laser beam. The thickness of Ag thin film was varied from 60nm and the thickness of chalcogenide thin film was varied from 2um. Frist, holographic lithography with 1-D photonic crystal on Ag/AsGeSeS film. And than revolved the sample $90^{\circ}$ to fabricate 2-D photonic crystal with holographic lithography.

  • PDF

Polymer Photonic Crystals Using Laser Holography Lithography (레이저 홀로그래피법을 이용한 폴리머 광결정의 패턴형성 기술)

  • 장원석;문준혁;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.123-126
    • /
    • 2004
  • We have demonstrated the fabrication of patterned 3D photonic crystals by holographic lithography in conjunction with soft lithography. Holographic lithography created 3D ordered macroporous structures and soft lithography made tailored defects. Because the hard baked photoresist pattern possessed high resistance against the uncured photoresist solution and the refractive index did not change appreciably by hard baking, a crosslinked photoresist was used as a relief pattern for the holographic fabrication of patterned 3D photonic crystals. More complicated defect geometries might be easily obtained with more complicated patterns on PDMS stamps. Moreover, the present results might be used as templates for 3D PCs of highindex defects that can be exploited as optical waveguides and optical circuits.

  • PDF

Holographic Recording Versus Holographic Lithography

  • Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.638-654
    • /
    • 2023
  • Holography is generally known as a technology that records and reconstructs 3D images by simultaneously capturing the intensity and phase information of light. Two or more interfering beams and illumination of this interference pattern onto a photosensitive recording medium allow us to control both the intensity and phase of light. Holography has found widespread applications not only in 3D imaging but also in manufacturing. In fact, it has been commonly used in semiconductor manufacturing, where interference light patterns are applied to photolithography, effectively reducing the half-pitch and period of line patterns, and enhancing the resolution of lithography. Moreover, holography can be used for the manufacturing of 3D regular structures (3D photonic crystals), not just surface patterns such as 1D or 2D gratings, and this can be broadly divided into (i) holographic recording and (ii) holographic lithography. In this review, we conceptually contrast two seemingly similar but fundamentally different manufacturing methods: holographic recording and holographic lithography. We comprehensively describe the differences in the manufacturing processes and the resulting structural features, as well as elucidate the distinctions in the diffractive optical properties that can be derived from them. Lastly, we aim to summarize the unique perspectives through which each method can appear distinct, with the intention of sharing information about this field with both experts and non-experts alike.

Two-dimensional Nano-patterning with Immersion Holographic Lithography (액침 홀로그래픽 리소그래피 기술을 이용한 2 차원 나노패터닝)

  • Kim, Sang-Won;Park, Sin-Jeung;Kang, Shin-Il;Hahn, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.128-134
    • /
    • 2006
  • Two-dimensional nano-patterns are fabricated using immersion holographic lithography. The photoresist layer is exposed to an interference pattern generated by two incident laser beams($\lambda$=441.6 nm, He-Cd laser) of which the pitch size is less than 200 nm. Good surface profiles of the 2 dimensional patterns are achieved by trimming the lithography process parameters, such as, exposure time, developing time and refractive index of medium liquid.

TIR Holographic lithography using Surface Relief Hologram Mask (표면 부조 홀로그램 마스크를 이용한 내부전반사 홀로그래픽 노광기술)

  • Park, Woo-Jae;Lee, Joon-Sub;Song, Seok-Ho;Lee, Sung-Jin;Kim, Tae-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • Holographic lithography is one of the potential technologies for next generation lithography which can print large areas (6") as well as very fine patterns ($0.35{\mu}m$). Usually, photolithography has been developed with two target purposes. One was for LCD applications which require large areas (over 6") and micro pattern (over $1.5{\mu}m$) exposure. The other was for semiconductor applications which require small areas (1.5") and nano pattern (under $0.2{\mu}m$) exposure. However, holographic lithography can print fine patterns from $0.35{\mu}m$ to $1.5{\mu}m$ keeping the exposure area inside 6". This is one of the great advantages in order to realize high speed fine pattern photolithography. How? It is because holographic lithography is taking holographic optics instead of projection optics. A hologram mask is the key component of holographic optics, which can perform the same function as projection optics. In this paper, Surface-Relief TIR Hologram Mask technology is introduced, and enables more robust hologram masks than those previously reported that were formed in photopolymer recording materials. We describe the important parameters in the fabrication process and their optimization, and we evaluate the patterns printed from the surface-relief TIR hologram masks.

Image Stitching and Seamless Holographic Photo-Lithography for Large-Area Patterning (대면적 리소그래피를 위한 홀로그램 영상의 연결과 연결 영역에서의 간섭무늬 제거)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Soek-Ho;Lee, Sung-Jin;Kim, Oui-Serg
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • In this study, we propose an image stitching method for large-area holographic photo lithography. In this method, a hologram medium become a hologram mask for lithography. And the mask has information for stitched images. These images are recorded by signal images which are controlled with DMD (digital micro-mirror device), and serial hologram recording is achieved with a motorized linear stage. Using this method, fringe seams appear on the stitching area. To remove these fringe seams, double exposure holographic lithography is tried. Each stitched image is recorded and reconstructed with a different reference beam. The experiments confirm that fringe seams are removed.

Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light (비가간섭광을 이용한 내부전반사 홀로그래픽 리소그라피)

  • Lee, Joon-Sub;Park, Woo-Jae;Lee, Ji-Whan;Song, Seok-Ho;Lee, Sung-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.334-338
    • /
    • 2009
  • Recently, with increasing demand for flat-panel display product, methods for large area patterning are required. TIR (total internal reflection) holographic photo-lithography isstudied as one of the methods of large area lithography. In conventional TIR holography, light sources for hologram recording and image reconstruction are coherent beams such as laser beams. If the image is reconstructed with an incoherent light source such a UV lamp, the image noise from the coherence of light will be reduced and the UV lamp will be a better light source for large area exposure. We analyzed the effect of spectral bandwidth and angular bandwidth of the light source in image reconstruction and verified image blurring with experiments. For large area patterning which has micro-scale line width, it is expected that TIR holographic photo lithography by UV lamp will become a low-noise and low-priced technique.

Fabrication of Large Area Photonic Crystals with Periodic Defects by One-Step Holographic Lithography

  • Ma, Jie;Wong, Kam Sing;Li, Shan;Chen, Zhe;Zhou, Jianying;Zhong, Yongchun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • A one-step fabrication of a photonic crystal (PC) with functional defects is demonstrated. Using multi-beam phase-controlled holographic lithography with a diffracting optical element, large area one dimensional (1D) and two dimensional (2D) PCs with periodic defects were fabricated. The uniform area is up to $2mm^2$, and tens of defect channels have been introduced in the 1D and 2D PC structure. This technique gives rise to substantial reduction in the fabrication complexity and significant improvement in the spatial accuracy of introducing functional defects in photonic crystals. This method can also be used to design and fabricate three dimensional (3D) PCs with periodic defects.

The Characteristic Study of Amorphous Chalcogenide As-Ge-Se-S Thin Film for Photonic Crystal Application (포토닉 크리스탈 응용을 위한 비정질 칼코게나이드 As-Ge-Se-S 박막의 특성 연구)

  • Nam, Ki-Hyun;Ju, Long-Yun;Choi, Hyuk;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.580-583
    • /
    • 2008
  • In this paper, we investigated the properties of chalcogenide glass thin films formed by photo-inducing for use in 1-dimensional photonic crystals. We used Ag-doped amorphous As-Ge-Se-S thin films which belongs in the chalcogenide materials having sensitive photoluminescence properties. The purpose of this experiment is to form the holographic lattice for 1-dimensional photonic crystals. The way in which photo-induce into the amorphous chalcogenide thin films is holographic lithography method. We confirmed the formation of diffraction lattice by sensing the existence of diffraction beam and measured the diffraction efficiency. The results suggest that there is an application possibility with photonic crystals.