• Title/Summary/Keyword: High-pressure homogenization

Search Result 49, Processing Time 0.024 seconds

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films (고압균질처리가 전분필름의 물성에 미치는 영향)

  • Kang, Eun-Jung;Lee, Jae-Kwon
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • The effects of high pressure homogenization (microfluidization) on physicochemical properties of normal maize and oxidized maize starch film were studied. The molecular dispersibility of amlyose and amylopectin and the disintegration of granular structure had a marked effect on the physicochemical properties of starch films. The high pressure homogenized starch films showed increased solubility and transmittance due to the absence of gelatinized starch granules. The tensile strength of starch film increased significantly with decreasing oxygen permeability after high pressure homogenization, indicating that starch molecules were more uniformly and fully dispersed during the film formation. As a result, a clear starch film with improved mechanical properties was obtained after high pressure homogenization due to the increased interactions between the uniformly dispersed starch molecules.

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production (구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Ahn, Ju-Hee;Seo, Yong-Chang;Lee, Sang-Eun;Jung, Kyung-Hwan;Kang, Do-Hyung;Cho, Jeong-Sub;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.

Applying Response Surface Methodology to Predict the Homogenization Efficiency of Milk (우유 균질 조건 예측을 위한 반응표면방법론의 활용)

  • Sungsue Rheem;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Response surface methodology (RSM) is a statistical approach widely used in food processing to optimize the formulation, processing conditions, and quality of food products. The homogenization process is achieved by subjecting milk to high pressure, which breaks down fat globules and disperses fat more evenly throughout milk. This study focuses on an application of RSM including the logit transformation to predict the efficiency of milk homogenization, which can be maximized by minimizing the relative difference in fat percentage between the top part and the remainder of milk. To avoid a negative predicted value of the minimum of this proportion, the logit transformation is used to turn the proportion into the logit, whose possible values are real numbers. Then, the logit values are modeled and optimized. Subsequently, the logistic transformation is used to turn the predicted logit into the predicted proportion. From our model, the optimum condition for the maximized efficiency of milk homogenization was predicted as the combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 10 days. Additionally, with a combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 50 days, the level of milk homogenization was predicted to be acceptable, even with the problem of extrapolation taken into account.

Enhancement of Antifungal Activity of Anthracnose in Pepper by Nanopaticles of Thiamine Di-lauryl Sulfate (비타민 B1 유도체(Thiamine Di-lauryl Sulfate:TDS)의 나노입자화를 통한 고추탄저병균의 항진균 활성 증진)

  • Seo, Yong-Chang;Cho, Jeong-Sub;Jeong, Hae-Yoon;Yim, Tae-Bin;Cho, Kyoung-Sook;Lee, Tae-Woo;Jeong, Myoung-Hoon;Lee, Gang-Hyeong;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2011
  • This study was performed to enhance antifungal activity of anthracnose in chili pepper by nanopaticles of thiamine di-lauryl sulfate (TDS) through high pressure homogenization process. Yield of TDS was 79.14% by reaction of thiamine hydrochloride and sodium lauryl sulfate. TDS nanopaticle solution was manufactured through high pressure homogenization process. The turbidity of nanoparticles solution was increased with increasing the concentration of TDS, and nanoparticles solution of 100 ppm was showed the highest turbidity with absorbance of 3.212. The size of nanoparticles solution was measured as average 258.6 nm by DLS. Nanoparticles solution of 100 ppm showed growth inhibition activity with higher than about 80% compared to the control group against Colletotrichum gloeosporioides. Finally, nanoparticles solution was increased effectively the penetration of the TDS nanopaticles on attached cell membrane of hyphae and started to destruct the cells under microscope observation. Consequently, we suggested that the TDS nanoparticle solution by high pressure homogenization process might be suitable biochemical pesticides for improving the antifungal activities against anthracnose in pepper.

Effect of trans-Cinnamaldehyde and High Pressure Treatment on Physico-chemical and Microbial Properties of Milk during Storage Periods

  • Chun, Ji-Yeon;Kim, Kwon-Beom;Shin, Jong-Boo;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • This study was carried out to investigate the effect of trans-cinnamaldehyde and high pressure treatment on milk. Cinnamon oil milk was manufactured by high speed homogenization (3,000 rpm) and high pressure homogenization (500 and 2,000 bar) processing UHT milk and trans-cinnamaldehyde of various concentrations (0 to 0.1% (w/v)). Cinnamon oil milk was inoculated with Escherichia coli (6.4 Log CFU/mL) and kept at $7^{\circ}C$ for 10 d to observe the antibacterial effect. The cinnamon oil milk containing 0.05% (w/v) trans-cinnamaldehyde initially began to show an antibacterial effect and Escherichia coli completely died in cinnamon oil milk added 0.1% (w/v) trans-cinnamaldehyde on the 6th day of storage. The result of the TBA value showed that the addition of 0.1% (w/v) trans-cinnamaldehyde was also effective to protect lipid oxidation. In the physical properties of cinnamon oil milk, particle sizes were enlarged in all samples during storage periods and the total color difference of cinnamon oil milk was slightly increased as level of high pressure. The surface tension of cinnamon oil milk treated 2,000 bar was remarkably higher than other samples. It seems that trans-cinnamaldehyde showed antibacterial activity and antioxidation effect at 0.05 and 0.1% (w/v) of concentration. Remarkably, high pressure treatment did not influence its microbial property but slightly affected the physical properties of cinnamon oil milk.

A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology (반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구)

  • Se-Yeon Kim;Won Hyung Kim;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.231-245
    • /
    • 2023
  • In the cosmetics industry, it is important to develop new materials for functional cosmetics such as whitening, wrinkles, anti-oxidation, and anti-aging, as well as technology to increase absorption when applied to the skin. Therefore, in this study, we tried to optimize the nanoemulsion formulation by utilizing response surface methodology (RSM), an experimental design method. A nanoemulsion was prepared by a high-pressure emulsification method using Glabridin as an active ingredient, and finally, the optimized skin absorption rate of the nanoemulsion was evaluated. Nanoemulsions were prepared by varying the surfactant content, cholesterol content, oil content, polyol content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization as RSM factors. Among them, surfactant content, oil content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization, which are factors that have the greatest influence on particle size, were used as independent variables, and particle size and skin absorption rate of nanoemulsion were used as response variables. A total of 29 experiments were conducted at random, including 5 repetitions of the center point, and the particle size and skin absorption of the prepared nanoemulsion were measured. Based on the results, the formulation with the minimum particle size and maximum skin absorption was optimized, and the surfactant content of 5.0 wt%, oil content of 2.0 wt%, high-pressure homogenization pressure of 1,000 bar, and the cycling number of high-pressure homogenization of 4 pass were derived as the optimal conditions. As the physical properties of the nanoemulsion prepared under optimal conditions, the particle size was 111.6 ± 0.2 nm, the PDI was 0.247 ± 0.014, and the zeta potential was -56.7 ± 1.2 mV. The skin absorption rate of the nanoemulsion was compared with emulsion as a control. As a result of the nanoemulsion and general emulsion skin absorption test, the cumulative absorption of the nanoemulsion was 79.53 ± 0.23%, and the cumulative absorption of the emulsion as a control was 66.54 ± 1.45% after 24 h, which was 13% higher than the emulsion.