DOI QR코드

DOI QR Code

구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진

Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production

  • 최운용 (강원대학교 생물소재공학전공) ;
  • 이춘근 (강원대학교 생물소재공학전공) ;
  • 안주희 (강원대학교 생물소재공학전공) ;
  • 서용창 (강원대학교 의료, 융복합 인재양성센터) ;
  • 이상은 (충주대학교 바이오산업학과) ;
  • 정경환 (충주대학교 바이오산업학과) ;
  • 강도형 (한국해양연구원) ;
  • 조정섭 (두산에코비즈넷) ;
  • 최근표 (강원도립대학교 식품가공제과제빵과) ;
  • 이현용 (강원대학교 생물소재공학전공)
  • Choi, Woon-Yong (Department of Biomaterial Engineering, Kangwon Natl. Univ.) ;
  • Lee, Choon-Geun (Department of Biomaterial Engineering, Kangwon Natl. Univ.) ;
  • Ahn, Ju-Hee (Department of Biomaterial Engineering, Kangwon Natl. Univ.) ;
  • Seo, Yong-Chang (Medical & Bio-Material Research Center and Department of Biomaterials Engineering College of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Cho, Jeong-Sub (DooSan EcoBizNet) ;
  • Choi, Geun-Pyo (Department of Food Processing and Bakery, Gangwon Provincial College) ;
  • Lee, Hyeon-Yong (Department of Biomaterial Engineering, Kangwon Natl. Univ.)
  • 투고 : 2011.08.03
  • 심사 : 2011.09.20
  • 발행 : 2011.10.31

초록

This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.

키워드

참고문헌

  1. Wright, L. (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based project. Biomass Bioenerg. 30: 706-714. https://doi.org/10.1016/j.biombioe.2005.08.008
  2. Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287. https://doi.org/10.1016/0144-8617(95)00020-8
  3. Kloareg, B. and R. S. Quatrano (1988) Structure of the cell walls of marine algae and ecophysical function of the matrix polysaccharides. Oceanogr. Mar. Biol. Ann. Rev. 26: 259-315.
  4. Davis, T. A., B. Volesky, and A. Mucci (2003) A Review of the Bio-chemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
  5. Yu, Q. and P. Kaewsarn (1999) A model for pH dependent equilibrium of heavy metal biosorption. Korean J. Chem. Eng. 16: 753-757. https://doi.org/10.1007/BF02698347
  6. Lee, M. G., J. H. Lim, and S. K. Kam (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J. Chem. Eng. 19: 277-284. https://doi.org/10.1007/BF02698414
  7. Munoz, R. and B. Guieysse (2006) Algal-bacterial processes for the treatment of hazardous contaminant: A Review. Water Res. 40: 2799-2815. https://doi.org/10.1016/j.watres.2006.06.011
  8. Sugano, Y., H. Kodama, I. Terada, Y. Yamajakiand, and M. Noma (1994) Purification and characterization of a novel enzyme, $\alpha$-neoagararooligosaccharide hydrolase, from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176: 6812-6818.
  9. Han, J. G., S. H. Oh, M. H. Jeong, H. B. Seo, K. H. Jeong, and H. Y. Lee (2010) Enhancement of saccharification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB Journal. 25: 245-362.
  10. Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.
  11. Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. lnd. 40: 23-30.
  12. Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. Inter. J. Pharma. 278: 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029
  13. Gray, K. A., L. Zhao, and M. Emphage (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6. https://doi.org/10.1016/j.cbpa.2006.01.015
  14. Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour. Technol. 99: 6505-6511. https://doi.org/10.1016/j.biortech.2007.11.032
  15. Mosier, N., R. Hendrickson, M. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  16. Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.
  17. Nathan, M., W. Charles, D. Bruce, E. Richard, Y. Y. Lee, H. Mark, and L. Michael (2005) Features of promising thechnologies for pretreatments of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  18. Chaogang, L. and C. E. Wyman (2005) Partial flow of compressedhot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985. https://doi.org/10.1016/j.biortech.2005.01.012
  19. Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.
  20. Nikolic, S., L. Mojovic, M. Rakin, D. Pejin, and D. Savic (2008) A microwave assisted liquefaction as a pretreatment for the bioethanol production by the simultaneous saccharification and fermentation of corn meal. Chem. Ind. Chem. Eng. Quart. 14: 231-234. https://doi.org/10.2298/CICEQ0804231N
  21. Kong, J. A., Y. S. Han, and T. Han (2002) Rhythmic phenomena in the green alga Ulva pertusa kjellman. Algae. 17: 259-265. https://doi.org/10.4490/ALGAE.2002.17.4.259