DOI QR코드

DOI QR Code

A Study on Formulation Optimization for Improving Skin Absorption of Glabridin-Containing Nanoemulsion Using Response Surface Methodology

반응표면분석법을 활용한 Glabridin 함유 나노에멀젼의 피부흡수 향상을 위한 제형 최적화 연구

  • Se-Yeon Kim (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University) ;
  • Won Hyung Kim (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University) ;
  • Kyung-Sup Yoon (Department of Chemistry and Cosmetics, College of Natural Science, Jeju National University)
  • 김세연 (제주대학교 화학.코스메틱스학과) ;
  • 김원형 (제주대학교 화학.코스메틱스학과) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과)
  • Received : 2023.07.31
  • Accepted : 2023.09.22
  • Published : 2023.09.30

Abstract

In the cosmetics industry, it is important to develop new materials for functional cosmetics such as whitening, wrinkles, anti-oxidation, and anti-aging, as well as technology to increase absorption when applied to the skin. Therefore, in this study, we tried to optimize the nanoemulsion formulation by utilizing response surface methodology (RSM), an experimental design method. A nanoemulsion was prepared by a high-pressure emulsification method using Glabridin as an active ingredient, and finally, the optimized skin absorption rate of the nanoemulsion was evaluated. Nanoemulsions were prepared by varying the surfactant content, cholesterol content, oil content, polyol content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization as RSM factors. Among them, surfactant content, oil content, high-pressure homogenization pressure, and cycling number of high-pressure homogenization, which are factors that have the greatest influence on particle size, were used as independent variables, and particle size and skin absorption rate of nanoemulsion were used as response variables. A total of 29 experiments were conducted at random, including 5 repetitions of the center point, and the particle size and skin absorption of the prepared nanoemulsion were measured. Based on the results, the formulation with the minimum particle size and maximum skin absorption was optimized, and the surfactant content of 5.0 wt%, oil content of 2.0 wt%, high-pressure homogenization pressure of 1,000 bar, and the cycling number of high-pressure homogenization of 4 pass were derived as the optimal conditions. As the physical properties of the nanoemulsion prepared under optimal conditions, the particle size was 111.6 ± 0.2 nm, the PDI was 0.247 ± 0.014, and the zeta potential was -56.7 ± 1.2 mV. The skin absorption rate of the nanoemulsion was compared with emulsion as a control. As a result of the nanoemulsion and general emulsion skin absorption test, the cumulative absorption of the nanoemulsion was 79.53 ± 0.23%, and the cumulative absorption of the emulsion as a control was 66.54 ± 1.45% after 24 h, which was 13% higher than the emulsion.

화장품 업계에서는 미백, 주름, 항산화, 항노화 등 기능성 화장품의 신소재 개발과 더불어 실제로 피부에 적용 시 피부흡수율을 높이는 기술이 중요하다. 이에 본 연구에서는 실험설계법인 반응표면분석법(RSM)을 활용하여 나노에멀젼 제형을 최적화하고자 하였다. Glabridin을 활성성분으로 하여 고압유화 방법으로 나노에멀젼을 제조하였으며, 최종적으로 최적화한 나노에멀젼의 피부흡수율을 평가하였다. RSM 인자로서 계면활성제 함량, 콜레스테롤 함량, 오일 함량, 폴리올 함량, 고압유화 압력, 고압유화 횟수를 달리하여 나노에멀젼을 제조하였다. 그 중 입자 크기에 가장 큰 영향을 미치는 인자인 계면활성제 함량, 오일 함량, 고압유화 압력, 고압유화 횟수를 독립변수로 하였고, 나노에멀젼의 입자 크기와 피부흡수율을 반응변수로 하였다. 중심점 5 회 반복실험을 포함하여 총 29 회 실험이 무작위로 수행되었으며, 제조된 나노에멀젼의 입자 크기와 피부흡수율을 측정하였다. 그 결과를 바탕으로 최소 입자 크기, 최대 피부흡수율을 갖는 제형을 최적화하였으며, 계면활성제 함량 5.0 wt%. 오일 함량 2.0 wt%, 고압유화 압력 1,000 bar, 고압유화 횟수 4 pass를 최적 조건으로 도출하였다. 최적 조건으로 제조한 나노에멀젼의 물성으로 입자 크기는 111.6 ± 0.2 nm, 다분산지수는 0.247 ± 0.014, 제타전위는 -56.7 ± 1.2 mV로 측정되었다. 나노에멀젼과 일반 에멀젼 피부흡수 시험 결과, 24 h 후 나노에멀젼의 누적 투과량은 79.53 ± 0.23%이며, 대조군으로서 에멀젼의 누적 투과량은 66.54 ± 1.45%로 나노에멀젼이 에멀젼보다 13% 높았다.

Keywords

References

  1. R. S. Moreci and T. Lechler, Epidermal structure and differentiation, Curr. Biol., 30(4), 144 (2020).
  2. G. M. An, S. I. Park, M. G. Kim, S. H. Heo, and M. S. Shin, Skin permeability of petroselinum crispum extract using polymer micelles and epidermal penetration peptide, J. Soc. Cosmet. Sci. Korea, 45(3), 265 (2019).
  3. W. G. Cho, Transdermal delivery system of effective ingredients for cosmeceuticals, J. Soc. Cosmet. Sci. Korea, 37(2), 97 (2011).
  4. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. GarciaCelma, Nano-emulsions, Curr. Opin. Colloid Interface, 10, 102 (2005).
  5. D. J. McClements, Food emulsions: Principles, practices, and techniques, ed. F. M. Clydesdale, 2, CRC Press, New York Washington, D.C. (2004).
  6. N. Sharma, M. Bansal, S. Visht, P. K. Sharma, and G. T. Kulkarni, Nanoemulsion: A new concept of delivery system, Chron. Young Sci., 1(2), 2 (2010).
  7. N. B. Romes, R. A. Wahab, M. A. Hamid, H. A. Oyewusi, N. Huda, and R. Kobun, Thermodynimic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion, Sci. Rep., 11(20851), 1 (2021).
  8. M. J. Hidajat, J. H. Noh, J. B. Park, J. H. Hong, H. H. Kim, and W. T. Jo, Synthesis of ceramide nanoemulsion by high-pressure homogenizer and evaluation of its stability, Korean Chem. Eng. Res., 58(4), 590 (2020).
  9. P. H. Li and B. H. Chiang, Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology, Ultrason. Sonochem., 19, 192 (2012).
  10. M. Nejadmansouri, S. M. H. Hosseini, M. Niakosari, G. H. Yousefi, and M. T. Golmakani, Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature, Colloids Surf. A Physicochem. Eng. Asp., 506, 821 (2016).
  11. S. F. Sadeghian, M. Majdinasab, M. Nejadmansouri, S. Mohammad, and H. Hosseini, Effects of natural antioxidants and high-energy fabrication methods on physical properties and oxidative stability of flaxseed oil-in-water nanoemulsions, Ultrason. Sonochem., 92, 106277, 1 (2023).
  12. H. J. Kim, N. H. Jeong, Y. K. Yun, K. S. Park, and K. D. Nam, Preparation and properties of W/O emulsion by D phase emulsification, J. of Korean Oil Chem. Soc., 15(2), 25 (1998).
  13. W. G. Cho, E. H. Kim, B. J. Jeon, Y. K. Cha, and S. K. Park, Stability of nano-emulsions prepared upon change of composition, J. Soc. Cosmet. Sci. Korea, 39(1), 55 (2013).
  14. M. H. Kim, S. U. Kim. Y. U. Kim, and J. H. Kim, Absolute configurations of (±)-glabridin enantiomers, Bull. Korean. Chem. Soc., 30(2), 415 (2009).
  15. C. Simmler, G. F. Pauli, and S. N. Chen, Phytochemistry and biological properties of glabridin, Fitoterapia, 90, 160 (2013).
  16. D. Y. Choi and K. H. Row, Extraction and separation of glabridin from licorice by reversed phase high performance liquid chromatography, Anal. Sci. Technol., 19(6), 455 (2006).
  17. J. Chen., W. Yu, and Y. Huang, Inhibitory mechanisms of glabridin on tyrosinase, Spectrochim. Acta A Mol. Biomol. Spectrosc., 168, 111 (2016).
  18. T. N. Decaestecker, W. E. Lambert, C. H. VenPeteghem, D. Deforce, and J. F. VanBocxlaer, Optimization of solid-phase extraction for a liquid chromatographic-tandem mass spectrometric general unknown screening procedure by means of computational techniques, J. Chromatogr. A, 1056, 57 (2004).
  19. D. W. Park, W. S. Choi, and C. H. Lee, Study of optimized extraction conditions for simultaneous anti-inflammatory and antioxidant activity of Artemisia iwayomogi using response surface methodology, J. Soc. Cosmet. Sci. Korea, 45(3), 319 (2019).
  20. M. A. Roselan, S. E. Ashari, N. H. Faujan, S. M. M. Faudzi, and R. Mohamad, An improved nanoemulsion formulation containing kojic monooleate: Optimization, characterization and in vitro studies, Molecules, 25, (2020).
  21. C. W. Hsieh, P. H. Li, I. C. Lu, and T. H. Wang, Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology, J. Oleo Sci., 61(9), 483 (2012).
  22. S. E. Shim, Polymer science and technology, Polym. Korea, 22(5), 483 (2011).
  23. T. I. Hyeon and K. S. Yoon, Skin absorption and physical property of ceramide-added ethsome, Journal of the Korean Applied Science and Technology, 38(3), 801 (2021).
  24. Safety, Guideline for skin absorption: in vitro method, Ministry of food and drug safety (2023).
  25. E. Nazarzadeh, T. Anthonypillai, and S. Sajjadi, On the growth mechanisms of nanoemulsion, J. Colloid Interface Sci., 397, 154 (2013).
  26. C. Preetz, A. Hauser, G. Hause, A. Kramer, and K. Mader, Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: Distinction of nanoemulsions from nanocapsules, Eur. J. Pharm. Sci., 39, 141 (2010).
  27. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit, Physico-chemical stability of colloidal lipid particles, Biomater., 24, 4283 (2003).
  28. Y. Zhao, C. Wang, A. H. L. Chow, K. Ren, T. Gong, Z. Zhang, and Y. Zheng, Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies, Int. J. Pharm., 383, 170 (2010).