Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films

고압균질처리가 전분필름의 물성에 미치는 영향

  • Kang, Eun-Jung (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jae-Kwon (Department of Food Science and Biotechnology, Kyonggi University)
  • 강은정 (경기대학교 식품생물공학과) ;
  • 이재권 (경기대학교 식품생물공학과)
  • Received : 2010.11.09
  • Accepted : 2011.02.22
  • Published : 2011.02.28

Abstract

The effects of high pressure homogenization (microfluidization) on physicochemical properties of normal maize and oxidized maize starch film were studied. The molecular dispersibility of amlyose and amylopectin and the disintegration of granular structure had a marked effect on the physicochemical properties of starch films. The high pressure homogenized starch films showed increased solubility and transmittance due to the absence of gelatinized starch granules. The tensile strength of starch film increased significantly with decreasing oxygen permeability after high pressure homogenization, indicating that starch molecules were more uniformly and fully dispersed during the film formation. As a result, a clear starch film with improved mechanical properties was obtained after high pressure homogenization due to the increased interactions between the uniformly dispersed starch molecules.

전분필름의 물성에 미치는 고압균질 처리의 영향을 검토한 결과, 고압균질처리 옥수수전분필름은 산화전분필름과 유사한 투명도를 가지며, 용해도와 산소투과억제력의 증가와 함께 인장강도가 다소 높아지는 것을 확인하였다. 이러한 고압균질처리 옥수수전분필름의 물성변화는 고압균질기의 고압과 전단력에 의해 호화전분입자가 완전히 소실되고 전분의 용해도 증가와 보다 균일한 분산상이 형성되기 때문으로 판단되었다. 일반적인 호화과정을 통해 형성되는 전분필름의 구조는 연속상의 아밀로오스에 팽윤된 접분입자가 분산되어 있는 network 형태에서 형성된다. 반면 고압균질처리의 경우, 호화전분입자의 붕괴로 아밀로펙틴이 연속상을 이루고 여기에 아밀로오스가 분산상으로 존재하는 새로운 분산계(dispersed system)가 형성되어, 기존 호화 방법으로 제조한 필름과 다른 물성을 나타내는 것으로 판단되었다.

Keywords

Acknowledgement

Supported by : 경기대학교

References

  1. Anderson RA, Pfeifer VF, Bookwalter GN, Griffin EL. 1971. Instant CSM food blends for worldwide feeding. Cereal Sci. Today 16: 5-8.
  2. Augustin MA, Sanguansri P, Htoon A. 2003. Functional performance of a resistant starch ingredient modified using a microfluidizer. Innov. Food Sci. Emerg. 4: 367-376. https://doi.org/10.1016/S1466-8564(03)00061-4
  3. Bertuzzi MA, Armada M, Gottifredi JC. 2007. Physicochemical characterization of starch based films. J. Food Eng. 82: 17-25. https://doi.org/10.1016/j.jfoodeng.2006.12.016
  4. BSI. 1968. Optical methods for measuring brightness, whiteness, reflectance and opacity for paper. British Standards Institutions (B.S.4432), London, UK.
  5. Butler BL, Vergano PJ, Testin RF, Bunn JM, Wiles JL. 1996. Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci. 61: 953-955. https://doi.org/10.1111/j.1365-2621.1996.tb10909.x
  6. Elder AL, Schoch TJ. 1959. Measuring the useful properties of starch. Cereal Sci. Today 4: 202-208.
  7. Fringant C, Rinaudo M, Foray MF, Bardet M. 1998. Preparation of mixed esters of starch or use of an external plasticizer: Two different ways to change the properties of starch acetate films. Carbohyd. Polym. 35; 97-106. https://doi.org/10.1016/S0144-8617(97)00250-6
  8. Fuller AD. 1939. Manufacture of gum confections. U.S. Patent 2173878.
  9. Funke U, Bergthaller W, Lindhauer MG. 1988. Processing and characterization of biodegradable products based on starch. Polym. Degrad. Stabil. 59: 293-296.
  10. Gaudin S, Lourdin D, Le Boltan D, Ilari JL, Colonna P. 1999. Plasticization and mobility in starch-sorbitol films. J. Cereal Sci. 29: 273-284. https://doi.org/10.1006/jcrs.1999.0236
  11. Han YJ, Kim SS. 2008. Physical properties of mixed ${\kappa}/{\lambda}\;-\;and\;{\kappa}/{\lambda}\;-\;carageenan$ films. Korean J. Food Sci. Technol. 40: 42-46.
  12. Huang SL, Lai YJ. 1995. On the gas-permeability of hydroxyl terminated polybutadiene based polyurethane membranes. J. Membrane Sci. 105: 137-145. https://doi.org/10.1016/0376-7388(94)00319-T
  13. Huller GA, Schoch TJ. 1959. Molecular association of starch films. Tappi 42: 438-445.
  14. Iordache M, Jelen P. 2008. High pressure microfluidization treatment of heat denatured whey proteins for improving functionality. Innov. Food Sci. Emerg. 9: 224-231. https://doi.org/10.1016/j.ifset.2007.11.003
  15. Kim HJ, Lim CW, Hong SI. 2005. Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxylterminated polyether and 3-isocyanatopropyltriethoxysilane. J. Sol-Gel Sci. Techn. 36: 213-221. https://doi.org/10.1007/s10971-005-3782-y
  16. Koskinen M, Suortti T, Autio K, Myllarinen P, Poutanen K. 1996. Effect of pretreatment on the film forming properties of potato and barley starch dispersions. Ind. Crop Prod. 5: 23-34. https://doi.org/10.1016/0926-6690(95)00053-4
  17. Lafargue D, Lourdin D, Doublier, J. 2007. Film forming properties of a modified $starch/{\kappa}-carrageennan$ mixture in relation to its rheological behavior. Carbohyd. Polym. 70: 101-111. https://doi.org/10.1016/j.carbpol.2007.03.019
  18. Lloyd NE, Kirst LC. 1963. Some factors affecting the tensile strength of ctarch films. Cereal Chem. 40: 151-161.
  19. Lopez OV, Garcia MA, Zaritzky NE. 2008. Film forming capacity of chemically modified corn starches. Carbohyd. Polym. 73: 573-581. https://doi.org/10.1016/j.carbpol.2007.12.023
  20. Lopez-Rubio A, Lagaron JM, Ankerfors M, Lindstrom T, Nordqvist D, Mattozzi A, Hedenqvist MS. 2007. Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohyd. Polym. 68: 718-727. https://doi.org/10.1016/j.carbpol.2006.08.008
  21. Lu YS, Tighzerta L, Dole P, Erre D. 2005. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 46: 9863-9870. https://doi.org/10.1016/j.polymer.2005.08.026
  22. Mark AM, Mehltretter CL. 1969. Water-soluble films from partially acetylated high amylose corn starch. Die Starke 21:92-96. https://doi.org/10.1002/star.19690210403
  23. Swinkels, JM. 1985. Sources of starch. In: Starch conversion technology. Van Beynum GM, Roels JA (ed). Marcel Dekker, New York, NY, USA, pp 15-46.
  24. Takahashi R, Nakamura A. 1970. Properties of starch films and their improvement. Die Starke 22: 309-313. https://doi.org/10.1002/star.19700220906